gdeanrexroth The correct angle displays perfect alignment, but as a i rotate the .ply file you can see the gaps and holes. Even with pre and post processing filtering, it winds up the same. Better but still misaligned. I can and will continue my project however it heavily relies on displaying align material and parts point cloud. That's a huge part of the project with the camera. The expected results should look like the ToF Demo video.

@jakaskerl Here is somewhat of a better example.

    @jakaskerl
    More examples of the new script point cloud, some improvements are noticeable. But from the side again everything is not fully aligned.

    @jakaskerl
    With the pictures I attached above somewhat explains my side of the project as well. Without the fully, formed point cloud my team and I will not be able to view our material/parts in a 3d(point cloud) format. This results are with me undistorting the RGB camera. So I am still unsure if I can make much more progress on my side since the issue is being fixed internally by you and your team.

      gdeanrexroth The correct angle displays perfect alignment, but as a i rotate the .ply file you can see the gaps and holes.

      That is expected and is a result of occlusion.. This can't be fixed at all since information is missing.

      gdeanrexroth So I am still unsure if I can make much more progress on my side since the issue is being fixed internally by you and your team.

      The only fix on our part is include the RGB undistortion that was missed in the original release..

      Thanks,
      Jaka

      jakaskerl

      Undistorting the rgb doesn't help for me

      Without rgb undistort :

      With rgb undistort:

      It's probably because I'm using fisheye lenses.
      Using cv2.fisheye.initUndistortRectifyMap(...) doesn't help

        jakaskerl
        With undistorting not working properly are there any steps you recommend us to take? Or do we have to wait until depthai v3?

        I doubt that this is my issue but can incorrect calibration of misalignment? I have tried undistorting but it seemed to not work. I am new to the computer vision world so I am unaware of few terms. This is my result of using undistorting

          gdeanrexroth With undistorting not working properly are there any steps you recommend us to take? Or do we have to wait until depthai v3?

          Should be working properly, just on on fisheye lenses.

          gdeanrexroth This is my result of using undistorting

          Did you use the ImageAlign node to align the tof and RGB? The RGB looks ok at first glance, so either extrinsics/intrinsics are incorrect or there is a mistake in aligning.

          Thanks,
          Jaka

            jakaskerl
            Yes I did use the image aligned node within my script. I used the tof-rgb alignment script that you provided, I added a key function that will allow me to capture and save the tof-rgb depth as a ply file. There are other ways that I can approach this however, I simply wanted to see how the rgb would look.
            import numpy as np

            import cv2

            import depthai as dai

            import time

            from datetime import timedelta

            # This example is intended to run unchanged on an OAK-D-SR-PoE camera

            FPS = 30.0

            RGB_SOCKET = dai.CameraBoardSocket.CAM_C

            TOF_SOCKET = dai.CameraBoardSocket.CAM_A

            ALIGN_SOCKET = RGB_SOCKET

            # Define intrinsic parameters

            RGB_INTRINSICS = np.array([

            [494.3519287109375, 0.0, 321.8478088378906],
            
            [0.0, 499.4835205078125, 258.3044128417969],
            
            [0.0, 0.0, 1.0]

            ])

            TOF_INTRINSICS = np.array([

            [842.6837768554688, 0.0, 673.1340942382812],
            
            [0.0, 851.867431640625, 412.4818115234375],
            
            [0.0, 0.0, 1.0]

            ])

            # Define camera resolutions

            RGB_WIDTH, RGB_HEIGHT = 640, 480

            TOF_WIDTH, TOF_HEIGHT = 1280, 800

            class FPSCounter:

            def __init__(self):
            
                self.frameTimes = []
            
            def tick(self):
            
                # record the current time for the FPS calculation
            
                now = time.time()
            
                self.frameTimes.append(now)
            
                self.frameTimes = self.frameTimes[-100:]
            
            def getFps(self):
            
                if len(self.frameTimes) <= 1:
            
                    return 0
            
                # Calculate the FPS based on the recorded frame times
            
                return (len(self.frameTimes) - 1) / (self.frameTimes[-1] - self.frameTimes[0])

            def save_ply(rgb_image, depth_image, filename):

            # Get dimensions of the RGB image
            
            height, width, _ = rgb_image.shape
            
            # Save as PLY file
            
            with open(filename, 'w') as ply_file:
            
                #write ply header
            
                ply_file.write('ply\\n')
            
                ply_file.write('format ascii 1.0\\n')
            
                ply_file.write(f'element vertex {height \* width}\\n')
            
                ply_file.write('property float x\\n')
            
                ply_file.write('property float y\\n')
            
                ply_file.write('property float z\\n')
            
                ply_file.write('property uchar red\\n')
            
                ply_file.write('property uchar green\\n')
            
                ply_file.write('property uchar blue\\n')
            
                ply_file.write('end_header\\n')
            
                
            
                # Convert depth image to point cloud using ToF intrinsics
            
                fx = TOF_INTRINSICS[0, 0]
            
                fy = TOF_INTRINSICS[1, 1]
            
                cx = TOF_INTRINSICS[0, 2]
            
                cy = TOF_INTRINSICS[1, 2]
            
                
            
                for v in range(height):
            
                    for u in range(width):
            
                        z = depth_image[v, u]  # Depth value
            
                        if z > 0:  # Ignore zero 
            
                            # calculate 3d coordinates
            
                            x = (u - cx) \* z / fx
            
                            y = (v - cy) \* z / fy
            
                            r, g, b = rgb_image[v, u]  # RGB color
            
                            #write the vertex data to PLY file
            
                            ply_file.write(f'{x} {y} {z} {r} {g} {b}\\n')

            pipeline = dai.Pipeline()

            # Define sources and outputs

            camRgb = pipeline.create(dai.node.ColorCamera)

            tof = pipeline.create(dai.node.ToF)

            camTof = pipeline.create(dai.node.Camera)

            sync = pipeline.create(dai.node.Sync)

            align = pipeline.create(dai.node.ImageAlign)

            out = pipeline.create(dai.node.XLinkOut)

            # ToF settings

            camTof.setFps(FPS)

            camTof.setImageOrientation(dai.CameraImageOrientation.ROTATE_180_DEG)

            camTof.setBoardSocket(TOF_SOCKET)

            # rgb settings

            camRgb.setBoardSocket(RGB_SOCKET)

            camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_800_P)

            camRgb.setFps(FPS)

            camRgb.setIspScale(1, 1)

            # defines image sizes

            depthSize = (TOF_WIDTH, TOF_HEIGHT)

            rgbSize = camRgb.getIspSize()

            # set output stream name

            out.setStreamName("out")

            # configure synchronization threshold

            sync.setSyncThreshold(timedelta(seconds=0.5 / FPS))

            # Linking

            camRgb.isp.link(sync.inputs["rgb"]) #link RGB camera output to sync node

            camTof.raw.link(tof.input) #link TOF camera raw output to TOF node

            tof.depth.link(align.input) #link TOF depth output to align node

            align.outputAligned.link(sync.inputs["depth_aligned"]) #link aligned depth to sync node

            sync.inputs["rgb"].setBlocking(False) #set rgb input as non-blocking

            camRgb.isp.link(align.inputAlignTo) #link sync output to XLinkOut node

            sync.out.link(out.input)

            def colorizeDepth(frameDepth):

            invalidMask = frameDepth == 0
            
            try:
            
                minDepth = np.percentile(frameDepth[frameDepth != 0], 3)
            
                maxDepth = np.percentile(frameDepth[frameDepth != 0], 95)
            
                logDepth = np.log(frameDepth, where=frameDepth != 0)
            
                logMinDepth = np.log(minDepth)
            
                logMaxDepth = np.log(maxDepth)
            
                np.nan_to_num(logDepth, copy=False, nan=logMinDepth)
            
                logDepth = np.clip(logDepth, logMinDepth, logMaxDepth)
            
                depthFrameColor = np.interp(logDepth, (logMinDepth, logMaxDepth), (0, 255))
            
                depthFrameColor = np.nan_to_num(depthFrameColor)
            
                depthFrameColor = depthFrameColor.astype(np.uint8)
            
                depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_JET)
            
                depthFrameColor[invalidMask] = 0
            
            except IndexError:
            
                depthFrameColor = np.zeros((frameDepth.shape[0], frameDepth.shape[1], 3), dtype=np.uint8)
            
            except Exception as e:
            
                raise e
            
            return depthFrameColor

            rgbWeight = 0.4

            depthWeight = 0.6

            def updateBlendWeights(percentRgb):

            global depthWeight
            
            global rgbWeight
            
            rgbWeight = float(percentRgb) / 100.0
            
            depthWeight = 1.0 - rgbWeight

            # Connect to device and start pipeline

            remapping = True

            save_ply_flag = False

            with dai.Device(pipeline) as device:

            queue = device.getOutputQueue("out", 8, False)
            
            rgbDepthWindowName = "rgb-depth"
            
            cv2.namedWindow(rgbDepthWindowName)
            
            cv2.createTrackbar(
            
                "RGB Weight %",
            
                rgbDepthWindowName,
            
                int(rgbWeight \* 100),
            
                100,
            
                updateBlendWeights,
            
            )
            
            
            
            try:
            
                calibData = device.readCalibration2()
            
                M1 = np.array(calibData.getCameraIntrinsics(ALIGN_SOCKET, \*depthSize))
            
                D1 = np.array(calibData.getDistortionCoefficients(ALIGN_SOCKET))
            
                M2 = np.array(calibData.getCameraIntrinsics(RGB_SOCKET, \*rgbSize))
            
                D2 = np.array(calibData.getDistortionCoefficients(RGB_SOCKET))
            
                # Use the predefined intrinsics if available, otherwise use the calibration data
            
                if TOF_INTRINSICS is not None:
            
                    M1 = TOF_INTRINSICS
            
                if RGB_INTRINSICS is not None:
            
                    M2 = RGB_INTRINSICS
            
                try:
            
                    T = np.array(calibData.getCameraTranslationVector(ALIGN_SOCKET, RGB_SOCKET, False)) \* 10
            
                except RuntimeError:
            
                    T = np.array([0.0, 0.0, 0.001])
            
                try:
            
                    R = np.array(calibData.getCameraExtrinsics(ALIGN_SOCKET, RGB_SOCKET, False))[0:3, 0:3]
            
                except RuntimeError:
            
                    R = np.eye(3)
            
                TARGET_MATRIX = M1
            
                lensPosition = calibData.getLensPosition(RGB_SOCKET)
            
            except:
            
                raise
            
            
            
            fpsCounter = FPSCounter()
            
            while True:
            
                messageGroup = queue.get()
            
                fpsCounter.tick()
            
                assert isinstance(messageGroup, dai.MessageGroup)
            
                frameRgb = messageGroup["rgb"]
            
                assert isinstance(frameRgb, dai.ImgFrame)
            
                frameDepth = messageGroup["depth_aligned"]
            
                assert isinstance(frameDepth, dai.ImgFrame)
            
                sizeRgb = frameRgb.getData().size
            
                sizeDepth = frameDepth.getData().size
            
                
            
                if frameDepth is not None:
            
                    rgbFrame = frameRgb.getCvFrame()
            
                    alignedDepthColorized = colorizeDepth(frameDepth.getFrame())
            
                    cv2.putText(
            
                        alignedDepthColorized,
            
                        f"FPS: {fpsCounter.getFps():.2f}",
            
                        (10, 30),
            
                        cv2.FONT_HERSHEY_SIMPLEX,
            
                        1,
            
                        (255, 255, 255),
            
                        2,
            
                    )
            
                    cv2.imshow("depth", alignedDepthColorized)
            
                    key = cv2.waitKey(1)
            
                    if key == ord("m"):
            
                        remapping = not remapping
            
                        print(f"Remap turned {'ON' if remapping else 'OFF'}.")
            
                    elif key == ord('s'):
            
                        save_ply_flag = True
            
                    if remapping:
            
                        mapX, mapY = cv2.initUndistortRectifyMap(
            
                            M2, D2, None, M2, rgbSize, cv2.CV_32FC1
            
                        )
            
                        rgbFrame = cv2.remap(rgbFrame, mapX, mapY, cv2.INTER_LINEAR)
            
                    blended = cv2.addWeighted(
            
                        rgbFrame, rgbWeight, alignedDepthColorized, depthWeight, 0
            
                    )
            
                    cv2.imshow(rgbDepthWindowName, blended)
            
                if save_ply_flag:
            
                    rgb_frame = cv2.cvtColor(rgbFrame, cv2.COLOR_BGR2RGB)
            
                    save_ply(rgb_frame, frameDepth.getFrame(), 'george_rgb1.ply')
            
                    print("PLY file saved as 'george_rgb.ply'")
            
                    save_ply_flag = False
            
                if key == ord("q"):
            
                    break

            cv2.destroyAllWindows()

            I ran this script :https://docs.luxonis.com/software/depthai/examples/calibration_reader/
            Here are the results from it, however if its extrinsic. Then I may have to recalibrate the camera with the method you recommended to me :

            RGB Camera Default intrinsics...

            [[494.3519287109375, 0.0, 321.8478088378906], [0.0, 499.4835205078125, 258.3044128417969], [0.0, 0.0, 1.0]]

            640

            480

            RGB Camera Default intrinsics...

            [[494.3519287109375, 0.0, 321.8478088378906], [0.0, 499.4835205078125, 258.3044128417969], [0.0, 0.0, 1.0]]

            640

            480

            RGB Camera resized intrinsics... 3840 x 2160

            [[2.96611157e+03 0.00000000e+00 1.93108691e+03]

            [0.00000000e+00 2.99690112e+03 1.18982642e+03]

            [0.00000000e+00 0.00000000e+00 1.00000000e+00]]

            RGB Camera resized intrinsics... 4056 x 3040

            [[3.13295532e+03 0.00000000e+00 2.03971057e+03]

            [0.00000000e+00 3.16547681e+03 1.63600427e+03]

            [0.00000000e+00 0.00000000e+00 1.00000000e+00]]

            LEFT Camera Default intrinsics...

            [[842.6837768554688, 0.0, 673.1340942382812], [0.0, 851.867431640625, 412.4818115234375], [0.0, 0.0, 1.0]]

            1280

            800

            LEFT Camera resized intrinsics... 1280 x 720

            [[842.68377686 0. 673.13409424]

            [ 0. 851.86743164 372.48181152]

            [ 0. 0. 1. ]]

            RIGHT Camera resized intrinsics... 1280 x 720

            [[836.24615479 0. 656.42828369]

            [ 0. 845.62658691 399.05911255]

            [ 0. 0. 1. ]]

            LEFT Distortion Coefficients...

            k1: -9.116254806518555

            k2: 262.5550842285156

            p1: 0.007134947460144758

            p2: -0.0009857615223154426

            k3: 1347.274169921875

            k4: -9.195904731750488

            k5: 260.98687744140625

            k6: 1308.9786376953125

            s1: 0.0

            s2: 0.0

            s3: 0.0

            s4: 0.0

            τx: 0.0

            τy: 0.0

            RIGHT Distortion Coefficients...

            k1: -5.861973762512207

            k2: 5.3061065673828125

            p1: 0.005871884059160948

            p2: 0.00142634566873312

            k3: 88.46317291259766

            k4: -6.072614669799805

            k5: 7.037742614746094

            k6: 83.25321960449219

            s1: 0.0

            s2: 0.0

            s3: 0.0

            s4: 0.0

            τx: 0.0

            τy: 0.0

            RGB FOV 71.86000061035156, Mono FOV 71.86000061035156

            LEFT Camera stereo rectification matrix...

            [[ 9.94211665e-01 8.86633717e-03 -1.81476751e+01]

            [-4.90145546e-03 9.94452611e-01 2.86947005e+01]

            [ 2.85166444e-06 4.52051103e-06 9.96386328e-01]]

            RIGHT Camera stereo rectification matrix...

            [[ 1.00186534e+00 8.93177200e-03 -6.82440986e+00]

            [-4.93918803e-03 1.00179181e+00 -7.21055399e-01]

            [ 2.87361723e-06 4.55387305e-06 9.96286100e-01]]

            Transformation matrix of where left Camera is W.R.T right Camera's optical center

            [[ 9.99597728e-01 -7.52320397e-04 -2.83513945e-02 -3.98795390e+00]

            [ 5.31902653e-04 9.99969602e-01 -7.78123224e-03 -2.61692833e-02]

            [ 2.83563845e-02 7.76302209e-03 9.99567747e-01 -1.03633568e-01]

            [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]

            Transformation matrix of where left Camera is W.R.T RGB Camera's optical center

            [[ 9.99843597e-01 -8.23507272e-03 1.56521089e-02 -7.51402760e+00]

            [ 8.25367495e-03 9.99965310e-01 -1.12427305e-03 -1.49354547e-01]

            [-1.56423096e-02 1.25328498e-03 9.99876857e-01 4.59043831e-01]

            [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]

            @jakaskerl

            Screenshots of the same point cloud but from different angles. This is using the updated script that you gave me, along with the using the image align node.

              gdeanrexroth
              Try this:

              import os
              import time
              import json
              import cv2
              import depthai as dai
              import numpy as np
              from datetime import timedelta
              print(dai.__version__)
              from numba import jit, prange
              
              @jit(nopython=True, parallel=True)
              def reprojection(depth_image, depth_camera_intrinsics, camera_extrinsics, color_camera_intrinsics, depth_image_show = None):
                  height = len(depth_image)
                  width = len(depth_image[0])
                  if depth_image_show is not None:
                      image = np.zeros((height, width), np.uint8)
                  else:
                      image = np.zeros((height, width), np.uint16)
                  if(camera_extrinsics[0][3] > 0):
                      sign = 1
                  else:
                      sign = -1
                  for i in prange(0, height):
                      for j in prange(0, width):
                          if sign == 1:
                              # Reverse the order of the pixels
                              j = width - j - 1
                          d = depth_image[i][j]
                          if(d == 0):
                              continue
                          # Convert pixel to 3d point
                          x = (j - depth_camera_intrinsics[0][2]) * d / depth_camera_intrinsics[0][0]
                          y = (i - depth_camera_intrinsics[1][2]) * d / depth_camera_intrinsics[1][1]
                          z = d
              
                          # Move the point to the camera frame
                          x1 = camera_extrinsics[0][0] * x + camera_extrinsics[0][1] * y + camera_extrinsics[0][2] * z + camera_extrinsics[0][3]
                          y1 = camera_extrinsics[1][0] * x + camera_extrinsics[1][1] * y + camera_extrinsics[1][2] * z + camera_extrinsics[1][3]
                          z1 = camera_extrinsics[2][0] * x + camera_extrinsics[2][1] * y + camera_extrinsics[2][2] * z + camera_extrinsics[2][3]
              
                          u = color_camera_intrinsics[0][0] * (x1  / z1) + color_camera_intrinsics[0][2]
                          v = color_camera_intrinsics[1][1] * (y1  / z1) + color_camera_intrinsics[1][2]
                          int_u = round(u)
                          int_v = round(v)
                          if(int_v != i):
                              print(f'v -> {v} and i -> {i}') # This should never be printed
                          if int_u >= 0 and int_u < (len(image[0]) - 1) and int_v >= 0 and int_v < len(image):
                              if depth_image_show is not None:
                                  image[int_v][int_u] = depth_image_show[i][j][0]
                                  image[int_v][int_u + sign] = depth_image_show[i][j][0]
                              else:
                                  image[int_v][int_u] = z1
                                  image[int_v][int_u + sign] = z1
                  return image
              
              def create_pipeline(ALIGN_SOCKET):
                  pipeline = dai.Pipeline()
              
                  # Create ToF node
                  tof = pipeline.create(dai.node.ToF)
                  tof.setNumShaves(4)
              
                  # Configure the ToF node
                  tofConfig = tof.initialConfig.get()
                  tofConfig.enableFPPNCorrection = True
                  tofConfig.enableOpticalCorrection = True
                  tofConfig.enableWiggleCorrection = True
                  tofConfig.enableTemperatureCorrection = True
                  tofConfig.phaseUnwrappingLevel = 4
                  tof.initialConfig.set(tofConfig)
              
                  # Input for ToF configuration
                  xinTofConfig = pipeline.create(dai.node.XLinkIn)
                  xinTofConfig.setStreamName("tofConfig")
                  xinTofConfig.out.link(tof.inputConfig)
              
                  # Create ToF camera node
                  cam_tof = pipeline.create(dai.node.Camera)
                  cam_tof.setFps(20)
                  cam_tof.setImageOrientation(dai.CameraImageOrientation.ROTATE_180_DEG)
                  cam_tof.setBoardSocket(dai.CameraBoardSocket.CAM_A)
                  cam_tof.raw.link(tof.input)
              
                  # Create ColorCamera nodes for stereo pair
                  colorLeft = pipeline.create(dai.node.ColorCamera)
                  colorRight = pipeline.create(dai.node.ColorCamera)
              
              
                  # Configure ColorCameras
                  colorLeft.setBoardSocket(dai.CameraBoardSocket.CAM_B)
                  colorRight.setBoardSocket(dai.CameraBoardSocket.CAM_C)
                  colorLeft.setResolution(dai.ColorCameraProperties.SensorResolution.THE_800_P)
                  colorRight.setResolution(dai.ColorCameraProperties.SensorResolution.THE_800_P)
                  colorLeft.setFps(20)
                  colorRight.setFps(20)
                  colorLeft.setInterleaved(False)
                  colorRight.setInterleaved(False)
                  colorLeft.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
                  colorRight.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
                  #colorLeft.setImageOrientation(dai.CameraImageOrientation.NORMAL)
                  #colorRight.setImageOrientation(dai.CameraImageOrientation.NORMAL)
              
                  #colorLeft.setIspScale(2, 2)  # Corrected line
                  #colorRight.setIspScale(2, 1)  # Corrected line
              
              
                  # Create StereoDepth node
                  stereo = pipeline.create(dai.node.StereoDepth)
                  stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
                  stereo.initialConfig.setMedianFilter(dai.MedianFilter.MEDIAN_OFF)
                  stereo.setLeftRightCheck(True)
                  stereo.setExtendedDisparity(False)
                  stereo.setSubpixel(False)
                  stereo.setDepthAlign(ALIGN_SOCKET)
              
                  # Link the RAW outputs of the ColorCameras to the StereoDepth node
                  colorLeft.isp.link(stereo.left)
                  colorRight.isp.link(stereo.right)
              
              
                  # Create Sync node
                  sync = pipeline.create(dai.node.Sync)
                  sync.setSyncThreshold(timedelta(milliseconds=50))
              
                  # Link outputs to Sync node with specified input names
                  tof.depth.link(sync.inputs["depth_tof"])
                  stereo.depth.link(sync.inputs["depth_stereo"])
                  stereo.rectifiedLeft.link(sync.inputs["left_img"])
                  stereo.rectifiedRight.link(sync.inputs["right_img"])
                  colorLeft.isp.link(sync.inputs["rgb_img"])  # Corrected line
              
                  # Create XLinkOut node
                  xout = pipeline.create(dai.node.XLinkOut)
                  xout.setStreamName("sync_out")
                  sync.out.link(xout.input)
              
                  return pipeline
              
              def get_calib(RGB_SOCKET, ALIGN_SOCKET, depthSize, rgbSize):
                  calibData = device.readCalibration2()
                  M1 = np.array(calibData.getCameraIntrinsics(ALIGN_SOCKET, *depthSize))
                  D1 = np.array(calibData.getDistortionCoefficients(ALIGN_SOCKET))
                  M2 = np.array(calibData.getCameraIntrinsics(RGB_SOCKET, *rgbSize))
                  D2 = np.array(calibData.getDistortionCoefficients(RGB_SOCKET))
                  try:
                      T = (
                          np.array(calibData.getCameraTranslationVector(ALIGN_SOCKET, RGB_SOCKET, False))
                          * 10
                      )  # to mm for matching the depth
                  except:
                      T = np.array([0.0, 0.0, 0.001])
                  try:
                      R = np.array(calibData.getCameraExtrinsics(ALIGN_SOCKET, RGB_SOCKET, False))[
                      0:3, 0:3
                      ]
                  except:
                      R = np.eye(3)
                  TARGET_MATRIX = M1
                  lensPosition = calibData.getLensPosition(RGB_SOCKET)
                  return M1, D1, M2, D2, T, R, TARGET_MATRIX
              
              def getAlignedDepth(frameDepth, M1, D1, M2, D2, T, R, TARGET_MATRIX, depthSize,rgbSize):
                  R1, R2, _, _, _, _, _ = cv2.stereoRectify(M1, D1, M2, D2, (100, 100), R, T)  # The (100,100) doesn't matter as it is not used for calculating the rotation matrices
                  leftMapX, leftMapY = cv2.initUndistortRectifyMap(M1, None, R1, TARGET_MATRIX, depthSize, cv2.CV_32FC1)
                  depthRect = cv2.remap(frameDepth, leftMapX, leftMapY, cv2.INTER_NEAREST)
                  newR = np.dot(R2, np.dot(R, R1.T))  # Should be very close to identity
                  newT = np.dot(R2, T)
                  combinedExtrinsics = np.eye(4)
                  combinedExtrinsics[0:3, 0:3] = newR
                  combinedExtrinsics[0:3, 3] = newT
                  depthAligned = reprojection(depthRect, TARGET_MATRIX, combinedExtrinsics, TARGET_MATRIX)
                  # Rotate the depth to the RGB frame
                  R_back = R2.T
                  mapX, mapY = cv2.initUndistortRectifyMap(TARGET_MATRIX, None, R_back, M2, rgbSize, cv2.CV_32FC1)
                  outputAligned = cv2.remap(depthAligned, mapX, mapY, cv2.INTER_NEAREST)
                  return outputAligned
              
              MIN_DEPTH = 500  # mm
              MAX_DEPTH = 10000  # mm
              def colorizeDepth(frameDepth, minDepth=MIN_DEPTH, maxDepth=MAX_DEPTH):
                  invalidMask = frameDepth == 0
                  # Log the depth, minDepth and maxDepth
                  logDepth = np.log(frameDepth, where=frameDepth != 0)
                  logMinDepth = np.log(minDepth)
                  logMaxDepth = np.log(maxDepth)
                  depthFrameColor = np.interp(logDepth, (logMinDepth, logMaxDepth), (0, 255)).astype(
                      np.uint8
                  )
                  depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_JET)
                  # Set invalid depth pixels to black
                  depthFrameColor[invalidMask] = 0
                  return depthFrameColor
              
              RGB_SOCKET = dai.CameraBoardSocket.RGB
              TOF_SOCKET = dai.CameraBoardSocket.CAM_A
              LEFT_SOCKET = dai.CameraBoardSocket.LEFT
              RIGHT_SOCKET = dai.CameraBoardSocket.RIGHT
              ALIGN_SOCKET = RIGHT_SOCKET
              
              COLOR_RESOLUTION = dai.ColorCameraProperties.SensorResolution.THE_1080_P
              LEFT_RIGHT_RESOLUTION = dai.MonoCameraProperties.SensorResolution.THE_800_P
              toFSize =  (640, 480)
              rgbSize = (1280, 800)
              rgbWeight = 0.4
              depthWeight = 0.6
              
              def updateBlendWeights(percent_rgb):
                  """
                  Update the rgb and depth weights used to blend depth/rgb image
              
                  @param[in] percent_rgb The rgb weight expressed as a percentage (0..100)
                  """
                  global depthWeight
                  global rgbWeight
                  rgbWeight = float(percent_rgb) / 100.0
                  depthWeight = 1.0 - rgbWeight
              
              if __name__ == '__main__':
                  pipeline = create_pipeline(ALIGN_SOCKET)
                  rgb_depth_window_name = "rgb-depth"
              
                  with dai.Device(pipeline) as device:
                      cv2.namedWindow(rgb_depth_window_name)
                      cv2.createTrackbar(
                      "RGB Weight %",
                      rgb_depth_window_name,
                      int(rgbWeight * 100),
                      100,
                      updateBlendWeights,
                      )
                      # Create output queue
                      q_sync = device.getOutputQueue(name="sync_out", maxSize=4, blocking=False)
                      try:
                          M1, D1, M2, D2, T, R, TARGET_MATRIX = get_calib(RGB_SOCKET, ALIGN_SOCKET, toFSize, rgbSize)
                      except:
                          raise
                      # Read calibration data
                      calibration_handler = device.readCalibration()
                      camera_names = {
                          dai.CameraBoardSocket.CAM_B: 'cam_b',
                          dai.CameraBoardSocket.CAM_C: 'cam_c',
                          dai.CameraBoardSocket.CAM_A: 'tof'
                      }
              
                      # Create timestamped directory
                      timestamp = time.strftime("%Y%m%d_%H%M%S")
                      save_dir = os.path.join("data", timestamp)
                      os.makedirs(save_dir, exist_ok=True)
              
                      extrinsics_coeffs_tof_cam_b = calibration_handler.getCameraExtrinsics(dai.CameraBoardSocket.CAM_A, dai.CameraBoardSocket.CAM_B)
                      extrinsics_coeffs_cam_b_tof = calibration_handler.getCameraExtrinsics(dai.CameraBoardSocket.CAM_B, dai.CameraBoardSocket.CAM_A)
                      extrinsics_coeffs_tof_cam_c = calibration_handler.getCameraExtrinsics(dai.CameraBoardSocket.CAM_A, dai.CameraBoardSocket.CAM_C)
              
                      # Save calibration data into the folder
                      calib_data = {}
                      for camera_socket, camera_name in camera_names.items():
                          intrinsics = calibration_handler.getCameraIntrinsics(camera_socket)
                          dist_coeffs = calibration_handler.getDistortionCoefficients(camera_socket)
                          calib_data[camera_name] = {
                              'intrinsics': intrinsics,
                              'distortion_coefficients': dist_coeffs
                          }
              
                      calib_data['extrinsics'] = {
                          'tof_cam_b': extrinsics_coeffs_tof_cam_b,
                          'cam_b_tof': extrinsics_coeffs_cam_b_tof,
                          'tof_cam_c': extrinsics_coeffs_tof_cam_c
              
                      }
                      calibration_file = os.path.join(save_dir, "calibration.json")
                      with open(calibration_file, 'w') as f:
                          json.dump(calib_data, f, indent=4)
              
                      frame_counter = 0
                      while True:
                          # Get synchronized messages
                          msgGrp = q_sync.get()
              
                          frames = {}
                          for name, msg in msgGrp:
                              frames[name] = msg.getCvFrame()
              
                          if len(frames) == 5:
                              # Process the frames
                              depth_tof_frame = frames['depth_tof']
                              depth_stereo_frame = frames['depth_stereo']
                              left_frame = frames['left_img']
                              right_frame = frames['right_img']
                              rgb_frame = frames['rgb_img']
              
                              # Save the frames
                              depth_tof_filename = os.path.join(save_dir, f"depth_tof_{frame_counter:06d}.npy")
                              depth_stereo_filename = os.path.join(save_dir, f"depth_stereo_{frame_counter:06d}.npy")
                              left_filename = os.path.join(save_dir, f"left_img_{frame_counter:06d}.png")
                              right_filename = os.path.join(save_dir, f"right_img_{frame_counter:06d}.png")
                              rgb_filename = os.path.join(save_dir, f"rgb_img_{frame_counter:06d}.png")
              
                              np.save(depth_tof_filename, depth_tof_frame)
                              np.save(depth_stereo_filename, depth_stereo_frame)
                              cv2.imwrite(left_filename, left_frame)
                              cv2.imwrite(right_filename, right_frame)
                              cv2.imwrite(rgb_filename, rgb_frame)
              
                              # Optional: Display the images and depth maps
                              # Normalize and colorize depth maps for visualization
                              depth_tof_display = cv2.normalize(depth_tof_frame, None, 0, 255, cv2.NORM_MINMAX)
                              depth_tof_display = np.uint8(depth_tof_display)
                              depth_tof_display = cv2.applyColorMap(depth_tof_display, cv2.COLORMAP_JET)
                              cv2.imshow("Depth ToF", depth_tof_display)
              
                              depth_stereo_display = cv2.normalize(depth_stereo_frame, None, 0, 255, cv2.NORM_MINMAX)
                              depth_stereo_display = np.uint8(depth_stereo_display)
                              depth_stereo_display = cv2.applyColorMap(depth_stereo_display, cv2.COLORMAP_JET)
                              cv2.imshow("Depth Stereo", depth_stereo_display)
              
                              cv2.imshow("Left Image", left_frame)
                              cv2.imshow("Right Image", right_frame)
                              cv2.imshow("RGB Image", rgb_frame)
                              h, w = depth_stereo_frame.shape[:2]
                              M1_r, D1_r, M2_r, D2_r, T_r, R_r, TARGET_MATRIX_r = get_calib(RIGHT_SOCKET, TOF_SOCKET, toFSize, (w, h))
                              alignedFrame = depth_stereo_frame
                              alignedDepth = getAlignedDepth(depth_tof_frame, M1_r, D1_r, M2_r, D2_r, T_r, R_r, TARGET_MATRIX_r, toFSize,(w, h))
                              frame_counter += 1
              
                              alignedDepthColorized = colorizeDepth(alignedDepth)
                              alignedFrame = colorizeDepth(alignedFrame)
                              #mapX, mapY = cv2.initUndistortRectifyMap(
                              #    M2_r, D2_r, None, M2_r, (w,h), cv2.CV_32FC1
                              #)
                              #alignedFrame = cv2.remap(alignedFrame, mapX, mapY, cv2.INTER_LINEAR)
                              cv2.imshow("Aligned Image", alignedFrame)
                              cv2.imshow("Aligned depth Image", alignedDepthColorized)
                              #cv2.waitKey(0)
              
                              blended = cv2.addWeighted(alignedFrame, rgbWeight, alignedDepthColorized, depthWeight, 0)
                              cv2.imshow(rgb_depth_window_name, blended)
                              # Exit condition
                              if cv2.waitKey(1) == ord('q'):
                                  break
              
                      device.close()
                      print('Data collection complete.')

              The script aims to align TOF to depth.

              LMK if it works. If it doesn't, either intrinsics or extrinsics are bad.

              Thanks,
              Jaka

                jakaskerl
                This is the error I ran into:
                line 219, in <module>

                **pipeline = create_pipeline(ALIGN_SOCKET)**
                
                           **^^^^^^^^^^^^^^^^^^^^^^^^^^^^^**

                File "s:\DEPT\SVM4\Shared\Crossfunctional_Work\Projects\DepthCameras\LuxonisDepthAI\test_run\jimmy.py", line 61, in create_pipeline

                **tof.setNumShaves(4)**
                
                **^^^^^^^^^^^^^^^^**

                AttributeError: 'depthai.node.ToF' object has no attribute 'setNumShaves'

                  jakaskerl
                  Thank you for your response. I updated depthai within my conda environment, i was on version 2.25.1.0 and now I am at 2.28.0.0. I then proceed to run the code that you gave me and it successfully ran. However it was extremely lagging, I can only assume that the behavior occurred due to the multiple streams that were outputed…left,right image, rgb, depth tof, stereo and etc.

                  This is the results of what were outputted. Is this expected? Or do I still have to recalibrate my camera? In my opinion the rgb depth seems to improved once again, but since the multiple streams caused lag. I was unable to fully conclude much. Is it possible for me to edit this script to capture the rgb-depth ,stereo depth and tof depth and save them as .ply files to view them as a point cloud? I proved the real image so you can understand the environment that I am in and also see the objects that I am capturing. If I have said anything that is incorrect, please correct me 🙂.

                    @jakaskerl
                    One last thing here is the data from the calibration.json, which was created from the script along with the .npy files. With the new script that you gave me, do I have to add in my intrinsic and extrinsic parameters as I did before in a format like this? I asked a similar question before and I remember you saying that I should add it to the/a script that captures the pcd. However this files generates .npy files for stereo,tof,left,right and rgb. I am able to convert that .npy file into a point cloud, the results will be pasted at the bottom.
                    :
                    "

                    RGB_INTRINSICS = np.array([

                    [836.2461547851562, 0.0, 656.4282836914062],

                    [0.0, 845.6265869140625, 439.0591125488281],

                    [0.0, 0.0, 1.0]
                    I add the above parameters to a both the script you gave me and a script that convers .npy and depth png to a point cloud.

                    ])

                    **
                    TOF_INTRINSICS = np.array([    [494.3519287109375, 0.0, 321.8478088378906],    [0.0, 499.4835205078125, 258.3044128417969],    [0.0, 0.0, 1.0]])**

                    "
                    {

                    "cam_b": {

                    "intrinsics": [

                    [

                    842.6837768554688,

                    0.0,

                    673.1340942382812

                    ],

                    [

                    0.0,

                    851.867431640625,

                    412.4818115234375

                    ],

                    [

                    0.0,

                    0.0,

                    1.0

                    ]

                    ],

                    "distortion_coefficients": [

                    -9.116254806518555,

                    262.5550842285156,

                    0.007134947460144758,

                    -0.0009857615223154426,

                    1347.274169921875,

                    -9.195904731750488,

                    260.98687744140625,

                    1308.9786376953125,

                    0.0,

                    0.0,

                    0.0,

                    0.0,

                    0.0,

                    0.0

                    ]

                    },

                    "cam_c": {

                    "intrinsics": [

                    [

                    836.2461547851562,

                    0.0,

                    656.4282836914062

                    ],

                    [

                    0.0,

                    845.6265869140625,

                    439.0591125488281

                    ],

                    [

                    0.0,

                    0.0,

                    1.0

                    ]

                    ],

                    "distortion_coefficients": [

                    -5.861973762512207,

                    5.3061065673828125,

                    0.005871884059160948,

                    0.00142634566873312,

                    88.46317291259766,

                    -6.072614669799805,

                    7.037742614746094,

                    83.25321960449219,

                    0.0,

                    0.0,

                    0.0,

                    0.0,

                    0.0,

                    0.0

                    ]

                    },

                    "tof": {

                    "intrinsics": [

                    [

                    494.3519287109375,

                    0.0,

                    321.8478088378906

                    ],

                    [

                    0.0,

                    499.4835205078125,

                    258.3044128417969

                    ],

                    [

                    0.0,

                    0.0,

                    1.0

                    ]

                    ],

                    "distortion_coefficients": [

                    -8.41947078704834,

                    64.94961547851562,

                    0.006374209653586149,

                    0.0031096169259399176,

                    -82.0173110961914,

                    -8.491059303283691,

                    65.28081512451172,

                    -83.71215057373047,

                    0.0,

                    0.0,

                    0.0,

                    0.0,

                    0.0,

                    0.0

                    ]

                    },

                    "extrinsics": {

                    "tof_cam_b": [

                    [

                    0.9998435974121094,

                    0.008253674954175949,

                    -0.015642309561371803,

                    7.521265506744385

                    ],

                    [

                    -0.00823507271707058,

                    0.9999653100967407,

                    0.0012532849796116352,

                    0.08689548820257187

                    ],

                    [

                    0.015652108937501907,

                    -0.0011242730543017387,

                    0.999876856803894,

                    -0.34154483675956726

                    ],

                    [

                    0.0,

                    0.0,

                    0.0,

                    1.0

                    ]

                    ],

                    "cam_b_tof": [

                    [

                    0.9998435974121094,

                    -0.00823507271707058,

                    0.015652108937501907,

                    -7.5140275955200195

                    ],

                    [

                    0.008253674954175949,

                    0.9999653100967407,

                    -0.0011242730543017387,

                    -0.14935454726219177

                    ],

                    [

                    -0.015642309561371803,

                    0.0012532849796116352,

                    0.999876856803894,

                    0.45904383063316345

                    ],

                    [

                    0.0,

                    0.0,

                    0.0,

                    1.0

                    ]

                    ],

                    "tof_cam_c": [

                    [

                    0.9990038275718689,

                    0.007529935333877802,

                    -0.04398486390709877,

                    3.5399038791656494

                    ],

                    [

                    -0.007824795320630074,

                    0.9999480247497559,

                    -0.006535347551107407,

                    0.06738178431987762

                    ],

                    [

                    0.04393336549401283,

                    0.006873009726405144,

                    0.9990108013153076,

                    -0.23108027875423431

                    ],

                    [

                    0.0,

                    0.0,

                    0.0,

                    1.0

                    ]

                    ]

                    }

                    }

                    The image above is the result one of the .npy tof files that were created.

                      gdeanrexroth
                      Alignment looks good! The multiple streams are the cause of lag (displaying them doesn't help either). No need to recalibrate 🙂.

                      gdeanrexroth With the new script that you gave me, do I have to add in my intrinsic and extrinsic parameters as I did before in a format like this? I asked a similar question before and I remember you saying that I should add it to the/a script that captures the pcd.

                      The script that creates the pointcloud. If you wish to convert the depth to pointcloud, you need intrinsics. You can also just use the pointcloud node and this will all be done on device.

                      The layering your image shows, is because your depth is limited to 95 disparity values. If you turn on subpixel, this should be much better since you now have 754(don't quote me on the value) values which results in smoother transition.

                      Thanks,
                      Jaka

                        jakaskerl
                        Ahh okay, i misunderstood. I will try both methods of adding the node or just converting depth to point cloud. The JSON created a the calibration file after the code you gave me ran. Do I take the intrinsic parameters from there or do I have use the parameters from the calibration.py 🙂 ? Below is an example script that I am using to display my depth color image and my .npy file which then converts the depth image into a point cloud. I am still unfamiliar with .npy files, is it neccesary for me to include into this script:

                        import matplotlib.image as mpimg

                        import re

                        import open3d as o3d

                        import numpy as np

                        import matplotlib.pyplot as plt

                        # Define camera intrinsic parameters for both RGB and TOF

                        RGB_INTRINSICS = np.array([

                        [842.6837768554688, 0.0, 673.1340942382812],

                        [0.0, 851.867431640625, 412.4818115234375],

                        [0.0, 0.0, 1.0]])

                        TOF_INTRINSICS = np.array([

                        [494.3519287109375, 0.0, 321.8478088378906],
                        
                        [0.0, 499.4835205078125, 258.3044128417969],
                        
                        [0.0, 0.0, 1.0]

                        ])

                        # This is a special function used for reading NYU pgm format

                        # as it is written in big endian byte order.

                        def read_nyu_pgm(filename, byteorder='>'):

                        with open(filename, 'rb') as f:
                        
                            buffer = f.read()
                        
                        try:
                        
                            header, width, height, maxval = re.search(
                        
                                b"(^P5\\s(?:\\s\*#.\*[\\r\\n])\*"
                        
                                b"(\\d+)\\s(?:\\s\*#.\*[\\r\\n])\*"
                        
                                b"(\\d+)\\s(?:\\s\*#.\*[\\r\\n])\*"
                        
                                b"(\\d+)\\s(?:\\s\*#.\*[\\r\\n]\\s)\*)", buffer).groups()
                        
                        except AttributeError:
                        
                            raise ValueError("Not a raw PGM file: '%s'" % filename)
                        
                        img = np.frombuffer(buffer,
                        
                                            dtype=byteorder + 'u2',
                        
                                            count=int(width) \* int(height),
                        
                                            offset=len(header)).reshape((int(height), int(width)))
                        
                        img_out = img.astype('u2')
                        
                        return img_out

                        print("Read dataset")

                        # Use your specified paths for RGB and depth images

                        color_raw = o3d.io.read_image(r"S:\DEPT\SVM4\Shared\Crossfunctional_Work\Projects\DepthCameras\LuxonisDepthAI\test_run\data\20241023_132728\rgb_img_000005.png")

                        depth_array = np.load(r"S:\DEPT\SVM4\Shared\Crossfunctional_Work\Projects\DepthCameras\LuxonisDepthAI\test_run\data\20241023_132728\depth_stereo_000004.npy")

                        # Convert numpy depth array to Open3D image

                        depth_raw = o3d.geometry.Image(depth_array.astype(np.float32))

                        color = o3d.geometry.Image(np.asarray(color_raw))

                        # Create an Open3D RGBD image using your data

                        rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(

                        color_raw, depth_raw, convert_rgb_to_intensity=False)

                        print(rgbd_image)

                        plt.subplot(1, 2, 1)

                        plt.title('RGB image')

                        plt.imshow(rgbd_image.color)

                        plt.subplot(1, 2, 2)

                        plt.title('Depth image')

                        plt.imshow(rgbd_image.depth)

                        plt.show()

                        # Create point cloud from RGBD image using custom camera intrinsics

                        intrinsic = o3d.camera.PinholeCameraIntrinsic(

                        width=1280,
                        
                        height=800,
                        
                        fx=RGB_INTRINSICS[0, 0],
                        
                        fy=RGB_INTRINSICS[1, 1],
                        
                        cx=RGB_INTRINSICS[0, 2],
                        
                        cy=RGB_INTRINSICS[1, 2]

                        )

                        pcd = o3d.geometry.PointCloud.create_from_rgbd_image(

                        rgbd_image,
                        
                        intrinsic)

                        # Flip it, otherwise the pointcloud will be upside down

                        pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])

                        o3d.visualization.draw_geometries([pcd])

                        Outcome of script that CREATES the point cloud. And yes this before me trying the point cloud node. Intrinsincs are in but I am unsure if they are placed in the right area or format. Thank you for your reply 🙂 :

                        10/25/2024 8:17AM
                        this is my attempt to insert the point cloud while subpixel is set to True.

                        Create StereoDepth node

                        stereo = pipeline.create(dai.node.StereoDepth)
                        
                        stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
                        
                        stereo.initialConfig.setMedianFilter(dai.MedianFilter.MEDIAN_OFF)
                        
                        stereo.setLeftRightCheck(True)
                        
                        stereo.setExtendedDisparity(False)
                        
                        stereo.setSubpixel(True) # this was False at first but Jaka recommended True to get smoother point cloud
                        
                        stereo.setDepthAlign(ALIGN_SOCKET)
                        
                        # Link the RAW outputs of the ColorCameras to the StereoDepth node
                        
                        colorLeft.isp.link(stereo.left)
                        
                        colorRight.isp.link(stereo.right)
                        
                        pc_node = pipeline.create(dai.node.PointCloud)
                        
                        stereo.depth.link(pc_node.depth)
                        
                        pc_out = pipeline.create(dai.node.XLinkOut)
                        
                        pc_out.setStreamName("pc_out")
                        
                        pc_node.out.link(pc_out.input)
                        
                        # Create Sync node
                        
                        sync = pipeline.create(dai.node.Sync)
                        
                        sync.setSyncThreshold(timedelta(milliseconds=50))
                        
                        # Link outputs to Sync node with specified input names
                        
                        tof.depth.link(sync.inputs["depth_tof"])
                        
                        stereo.depth.link(sync.inputs["depth_stereo"])
                        
                        stereo.rectifiedLeft.link(sync.inputs["left_img"])
                        
                        stereo.rectifiedRight.link(sync.inputs["right_img"])
                        
                        colorLeft.isp.link(sync.inputs["rgb_img"])  # Corrected line
                        
                        # Create XLinkOut node
                        
                        xout = pipeline.create(dai.node.XLinkOut)
                        
                        xout.setStreamName("sync_out")
                        
                        sync.out.link(xout.input)
                        
                        return pipeline

                          gdeanrexroth Do I take the intrinsic parameters from there or do I have use the parameters from the calibration.py 🙂 ?

                          Take intrinsics from eeprom calibration.

                          Thanks,
                          Jaka

                            jakaskerl
                            Okay I have been using the those numbers within the file that creates the point cloud. I am still trying to use ICP to stitch the point clouds. My results vary but overall are still giving the similar results.

                            I am using a simple script that just displays the .ply file which allow me to crop them. But here is the version of the script that i am using.
                            import numpy as np

                            import open3d as o3d

                            def demo_crop_geometry():

                            print("Demo for manual geometry cropping")
                            
                            print("1) Press 'Y' twice to align geometry with negative direction of y-axis")
                            
                            print("2) Press 'K' to lock screen and to switch to selection mode")
                            
                            print("3) Drag for rectangle selection,")
                            
                            print("   or use ctrl + left click for polygon selection")
                            
                            print("4) Press 'C' to get a selected geometry")
                            
                            print("5) Press 'S' to save the selected geometry")
                            
                            print("6) Press 'F' to switch to freeview mode")
                            
                            
                            
                            # Load a single point cloud file
                            
                            # pcd = o3d.io.read_point_cloud(r'S:\\DEPT\\SVM4\\Shared\\Crossfunctional_Work\\Projects\\DepthCameras\\LuxonisDepthAI\\test_run\\Image and PointCloud of Material For AutoStore\\capture_1_2024_10_21_12_06_01\\tof_pointcloud_1.ply')
                            
                            # pcd = o3d.io.read_point_cloud(r"S:\\DEPT\\SVM4\\Shared\\Crossfunctional_Work\\Projects\\DepthCameras\\LuxonisDepthAI\\test_run\\GT_CUP\\MANUALLY_MODIFIED\\tof_pointcloud_5.ply")
                            
                            pcd = o3d.io.read_point_cloud(r'S:\\DEPT\\SVM4\\Shared\\Crossfunctional_Work\\Projects\\DepthCameras\\LuxonisDepthAI\\test_run\\GT_CUP\\MANUALLY_MODIFIED\\cropped_cup_5.ply')
                            
                            # Visualize and edit the point cloud
                            
                            o3d.visualization.draw_geometries_with_editing([pcd])

                            if name == "main":

                            demo_crop_geometry()