jakaskerl
With undistorting not working properly are there any steps you recommend us to take? Or do we have to wait until depthai v3?

I doubt that this is my issue but can incorrect calibration of misalignment? I have tried undistorting but it seemed to not work. I am new to the computer vision world so I am unaware of few terms. This is my result of using undistorting

    gdeanrexroth With undistorting not working properly are there any steps you recommend us to take? Or do we have to wait until depthai v3?

    Should be working properly, just on on fisheye lenses.

    gdeanrexroth This is my result of using undistorting

    Did you use the ImageAlign node to align the tof and RGB? The RGB looks ok at first glance, so either extrinsics/intrinsics are incorrect or there is a mistake in aligning.

    Thanks,
    Jaka

      jakaskerl
      Yes I did use the image aligned node within my script. I used the tof-rgb alignment script that you provided, I added a key function that will allow me to capture and save the tof-rgb depth as a ply file. There are other ways that I can approach this however, I simply wanted to see how the rgb would look.
      import numpy as np

      import cv2

      import depthai as dai

      import time

      from datetime import timedelta

      # This example is intended to run unchanged on an OAK-D-SR-PoE camera

      FPS = 30.0

      RGB_SOCKET = dai.CameraBoardSocket.CAM_C

      TOF_SOCKET = dai.CameraBoardSocket.CAM_A

      ALIGN_SOCKET = RGB_SOCKET

      # Define intrinsic parameters

      RGB_INTRINSICS = np.array([

      [494.3519287109375, 0.0, 321.8478088378906],
      
      [0.0, 499.4835205078125, 258.3044128417969],
      
      [0.0, 0.0, 1.0]

      ])

      TOF_INTRINSICS = np.array([

      [842.6837768554688, 0.0, 673.1340942382812],
      
      [0.0, 851.867431640625, 412.4818115234375],
      
      [0.0, 0.0, 1.0]

      ])

      # Define camera resolutions

      RGB_WIDTH, RGB_HEIGHT = 640, 480

      TOF_WIDTH, TOF_HEIGHT = 1280, 800

      class FPSCounter:

      def __init__(self):
      
          self.frameTimes = []
      
      def tick(self):
      
          # record the current time for the FPS calculation
      
          now = time.time()
      
          self.frameTimes.append(now)
      
          self.frameTimes = self.frameTimes[-100:]
      
      def getFps(self):
      
          if len(self.frameTimes) <= 1:
      
              return 0
      
          # Calculate the FPS based on the recorded frame times
      
          return (len(self.frameTimes) - 1) / (self.frameTimes[-1] - self.frameTimes[0])

      def save_ply(rgb_image, depth_image, filename):

      # Get dimensions of the RGB image
      
      height, width, _ = rgb_image.shape
      
      # Save as PLY file
      
      with open(filename, 'w') as ply_file:
      
          #write ply header
      
          ply_file.write('ply\\n')
      
          ply_file.write('format ascii 1.0\\n')
      
          ply_file.write(f'element vertex {height \* width}\\n')
      
          ply_file.write('property float x\\n')
      
          ply_file.write('property float y\\n')
      
          ply_file.write('property float z\\n')
      
          ply_file.write('property uchar red\\n')
      
          ply_file.write('property uchar green\\n')
      
          ply_file.write('property uchar blue\\n')
      
          ply_file.write('end_header\\n')
      
          
      
          # Convert depth image to point cloud using ToF intrinsics
      
          fx = TOF_INTRINSICS[0, 0]
      
          fy = TOF_INTRINSICS[1, 1]
      
          cx = TOF_INTRINSICS[0, 2]
      
          cy = TOF_INTRINSICS[1, 2]
      
          
      
          for v in range(height):
      
              for u in range(width):
      
                  z = depth_image[v, u]  # Depth value
      
                  if z > 0:  # Ignore zero 
      
                      # calculate 3d coordinates
      
                      x = (u - cx) \* z / fx
      
                      y = (v - cy) \* z / fy
      
                      r, g, b = rgb_image[v, u]  # RGB color
      
                      #write the vertex data to PLY file
      
                      ply_file.write(f'{x} {y} {z} {r} {g} {b}\\n')

      pipeline = dai.Pipeline()

      # Define sources and outputs

      camRgb = pipeline.create(dai.node.ColorCamera)

      tof = pipeline.create(dai.node.ToF)

      camTof = pipeline.create(dai.node.Camera)

      sync = pipeline.create(dai.node.Sync)

      align = pipeline.create(dai.node.ImageAlign)

      out = pipeline.create(dai.node.XLinkOut)

      # ToF settings

      camTof.setFps(FPS)

      camTof.setImageOrientation(dai.CameraImageOrientation.ROTATE_180_DEG)

      camTof.setBoardSocket(TOF_SOCKET)

      # rgb settings

      camRgb.setBoardSocket(RGB_SOCKET)

      camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_800_P)

      camRgb.setFps(FPS)

      camRgb.setIspScale(1, 1)

      # defines image sizes

      depthSize = (TOF_WIDTH, TOF_HEIGHT)

      rgbSize = camRgb.getIspSize()

      # set output stream name

      out.setStreamName("out")

      # configure synchronization threshold

      sync.setSyncThreshold(timedelta(seconds=0.5 / FPS))

      # Linking

      camRgb.isp.link(sync.inputs["rgb"]) #link RGB camera output to sync node

      camTof.raw.link(tof.input) #link TOF camera raw output to TOF node

      tof.depth.link(align.input) #link TOF depth output to align node

      align.outputAligned.link(sync.inputs["depth_aligned"]) #link aligned depth to sync node

      sync.inputs["rgb"].setBlocking(False) #set rgb input as non-blocking

      camRgb.isp.link(align.inputAlignTo) #link sync output to XLinkOut node

      sync.out.link(out.input)

      def colorizeDepth(frameDepth):

      invalidMask = frameDepth == 0
      
      try:
      
          minDepth = np.percentile(frameDepth[frameDepth != 0], 3)
      
          maxDepth = np.percentile(frameDepth[frameDepth != 0], 95)
      
          logDepth = np.log(frameDepth, where=frameDepth != 0)
      
          logMinDepth = np.log(minDepth)
      
          logMaxDepth = np.log(maxDepth)
      
          np.nan_to_num(logDepth, copy=False, nan=logMinDepth)
      
          logDepth = np.clip(logDepth, logMinDepth, logMaxDepth)
      
          depthFrameColor = np.interp(logDepth, (logMinDepth, logMaxDepth), (0, 255))
      
          depthFrameColor = np.nan_to_num(depthFrameColor)
      
          depthFrameColor = depthFrameColor.astype(np.uint8)
      
          depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_JET)
      
          depthFrameColor[invalidMask] = 0
      
      except IndexError:
      
          depthFrameColor = np.zeros((frameDepth.shape[0], frameDepth.shape[1], 3), dtype=np.uint8)
      
      except Exception as e:
      
          raise e
      
      return depthFrameColor

      rgbWeight = 0.4

      depthWeight = 0.6

      def updateBlendWeights(percentRgb):

      global depthWeight
      
      global rgbWeight
      
      rgbWeight = float(percentRgb) / 100.0
      
      depthWeight = 1.0 - rgbWeight

      # Connect to device and start pipeline

      remapping = True

      save_ply_flag = False

      with dai.Device(pipeline) as device:

      queue = device.getOutputQueue("out", 8, False)
      
      rgbDepthWindowName = "rgb-depth"
      
      cv2.namedWindow(rgbDepthWindowName)
      
      cv2.createTrackbar(
      
          "RGB Weight %",
      
          rgbDepthWindowName,
      
          int(rgbWeight \* 100),
      
          100,
      
          updateBlendWeights,
      
      )
      
      
      
      try:
      
          calibData = device.readCalibration2()
      
          M1 = np.array(calibData.getCameraIntrinsics(ALIGN_SOCKET, \*depthSize))
      
          D1 = np.array(calibData.getDistortionCoefficients(ALIGN_SOCKET))
      
          M2 = np.array(calibData.getCameraIntrinsics(RGB_SOCKET, \*rgbSize))
      
          D2 = np.array(calibData.getDistortionCoefficients(RGB_SOCKET))
      
          # Use the predefined intrinsics if available, otherwise use the calibration data
      
          if TOF_INTRINSICS is not None:
      
              M1 = TOF_INTRINSICS
      
          if RGB_INTRINSICS is not None:
      
              M2 = RGB_INTRINSICS
      
          try:
      
              T = np.array(calibData.getCameraTranslationVector(ALIGN_SOCKET, RGB_SOCKET, False)) \* 10
      
          except RuntimeError:
      
              T = np.array([0.0, 0.0, 0.001])
      
          try:
      
              R = np.array(calibData.getCameraExtrinsics(ALIGN_SOCKET, RGB_SOCKET, False))[0:3, 0:3]
      
          except RuntimeError:
      
              R = np.eye(3)
      
          TARGET_MATRIX = M1
      
          lensPosition = calibData.getLensPosition(RGB_SOCKET)
      
      except:
      
          raise
      
      
      
      fpsCounter = FPSCounter()
      
      while True:
      
          messageGroup = queue.get()
      
          fpsCounter.tick()
      
          assert isinstance(messageGroup, dai.MessageGroup)
      
          frameRgb = messageGroup["rgb"]
      
          assert isinstance(frameRgb, dai.ImgFrame)
      
          frameDepth = messageGroup["depth_aligned"]
      
          assert isinstance(frameDepth, dai.ImgFrame)
      
          sizeRgb = frameRgb.getData().size
      
          sizeDepth = frameDepth.getData().size
      
          
      
          if frameDepth is not None:
      
              rgbFrame = frameRgb.getCvFrame()
      
              alignedDepthColorized = colorizeDepth(frameDepth.getFrame())
      
              cv2.putText(
      
                  alignedDepthColorized,
      
                  f"FPS: {fpsCounter.getFps():.2f}",
      
                  (10, 30),
      
                  cv2.FONT_HERSHEY_SIMPLEX,
      
                  1,
      
                  (255, 255, 255),
      
                  2,
      
              )
      
              cv2.imshow("depth", alignedDepthColorized)
      
              key = cv2.waitKey(1)
      
              if key == ord("m"):
      
                  remapping = not remapping
      
                  print(f"Remap turned {'ON' if remapping else 'OFF'}.")
      
              elif key == ord('s'):
      
                  save_ply_flag = True
      
              if remapping:
      
                  mapX, mapY = cv2.initUndistortRectifyMap(
      
                      M2, D2, None, M2, rgbSize, cv2.CV_32FC1
      
                  )
      
                  rgbFrame = cv2.remap(rgbFrame, mapX, mapY, cv2.INTER_LINEAR)
      
              blended = cv2.addWeighted(
      
                  rgbFrame, rgbWeight, alignedDepthColorized, depthWeight, 0
      
              )
      
              cv2.imshow(rgbDepthWindowName, blended)
      
          if save_ply_flag:
      
              rgb_frame = cv2.cvtColor(rgbFrame, cv2.COLOR_BGR2RGB)
      
              save_ply(rgb_frame, frameDepth.getFrame(), 'george_rgb1.ply')
      
              print("PLY file saved as 'george_rgb.ply'")
      
              save_ply_flag = False
      
          if key == ord("q"):
      
              break

      cv2.destroyAllWindows()

      I ran this script :https://docs.luxonis.com/software/depthai/examples/calibration_reader/
      Here are the results from it, however if its extrinsic. Then I may have to recalibrate the camera with the method you recommended to me :

      RGB Camera Default intrinsics...

      [[494.3519287109375, 0.0, 321.8478088378906], [0.0, 499.4835205078125, 258.3044128417969], [0.0, 0.0, 1.0]]

      640

      480

      RGB Camera Default intrinsics...

      [[494.3519287109375, 0.0, 321.8478088378906], [0.0, 499.4835205078125, 258.3044128417969], [0.0, 0.0, 1.0]]

      640

      480

      RGB Camera resized intrinsics... 3840 x 2160

      [[2.96611157e+03 0.00000000e+00 1.93108691e+03]

      [0.00000000e+00 2.99690112e+03 1.18982642e+03]

      [0.00000000e+00 0.00000000e+00 1.00000000e+00]]

      RGB Camera resized intrinsics... 4056 x 3040

      [[3.13295532e+03 0.00000000e+00 2.03971057e+03]

      [0.00000000e+00 3.16547681e+03 1.63600427e+03]

      [0.00000000e+00 0.00000000e+00 1.00000000e+00]]

      LEFT Camera Default intrinsics...

      [[842.6837768554688, 0.0, 673.1340942382812], [0.0, 851.867431640625, 412.4818115234375], [0.0, 0.0, 1.0]]

      1280

      800

      LEFT Camera resized intrinsics... 1280 x 720

      [[842.68377686 0. 673.13409424]

      [ 0. 851.86743164 372.48181152]

      [ 0. 0. 1. ]]

      RIGHT Camera resized intrinsics... 1280 x 720

      [[836.24615479 0. 656.42828369]

      [ 0. 845.62658691 399.05911255]

      [ 0. 0. 1. ]]

      LEFT Distortion Coefficients...

      k1: -9.116254806518555

      k2: 262.5550842285156

      p1: 0.007134947460144758

      p2: -0.0009857615223154426

      k3: 1347.274169921875

      k4: -9.195904731750488

      k5: 260.98687744140625

      k6: 1308.9786376953125

      s1: 0.0

      s2: 0.0

      s3: 0.0

      s4: 0.0

      τx: 0.0

      τy: 0.0

      RIGHT Distortion Coefficients...

      k1: -5.861973762512207

      k2: 5.3061065673828125

      p1: 0.005871884059160948

      p2: 0.00142634566873312

      k3: 88.46317291259766

      k4: -6.072614669799805

      k5: 7.037742614746094

      k6: 83.25321960449219

      s1: 0.0

      s2: 0.0

      s3: 0.0

      s4: 0.0

      τx: 0.0

      τy: 0.0

      RGB FOV 71.86000061035156, Mono FOV 71.86000061035156

      LEFT Camera stereo rectification matrix...

      [[ 9.94211665e-01 8.86633717e-03 -1.81476751e+01]

      [-4.90145546e-03 9.94452611e-01 2.86947005e+01]

      [ 2.85166444e-06 4.52051103e-06 9.96386328e-01]]

      RIGHT Camera stereo rectification matrix...

      [[ 1.00186534e+00 8.93177200e-03 -6.82440986e+00]

      [-4.93918803e-03 1.00179181e+00 -7.21055399e-01]

      [ 2.87361723e-06 4.55387305e-06 9.96286100e-01]]

      Transformation matrix of where left Camera is W.R.T right Camera's optical center

      [[ 9.99597728e-01 -7.52320397e-04 -2.83513945e-02 -3.98795390e+00]

      [ 5.31902653e-04 9.99969602e-01 -7.78123224e-03 -2.61692833e-02]

      [ 2.83563845e-02 7.76302209e-03 9.99567747e-01 -1.03633568e-01]

      [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]

      Transformation matrix of where left Camera is W.R.T RGB Camera's optical center

      [[ 9.99843597e-01 -8.23507272e-03 1.56521089e-02 -7.51402760e+00]

      [ 8.25367495e-03 9.99965310e-01 -1.12427305e-03 -1.49354547e-01]

      [-1.56423096e-02 1.25328498e-03 9.99876857e-01 4.59043831e-01]

      [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]

      @jakaskerl

      Screenshots of the same point cloud but from different angles. This is using the updated script that you gave me, along with the using the image align node.

        gdeanrexroth
        Try this:

        import os
        import time
        import json
        import cv2
        import depthai as dai
        import numpy as np
        from datetime import timedelta
        print(dai.__version__)
        from numba import jit, prange
        
        @jit(nopython=True, parallel=True)
        def reprojection(depth_image, depth_camera_intrinsics, camera_extrinsics, color_camera_intrinsics, depth_image_show = None):
            height = len(depth_image)
            width = len(depth_image[0])
            if depth_image_show is not None:
                image = np.zeros((height, width), np.uint8)
            else:
                image = np.zeros((height, width), np.uint16)
            if(camera_extrinsics[0][3] > 0):
                sign = 1
            else:
                sign = -1
            for i in prange(0, height):
                for j in prange(0, width):
                    if sign == 1:
                        # Reverse the order of the pixels
                        j = width - j - 1
                    d = depth_image[i][j]
                    if(d == 0):
                        continue
                    # Convert pixel to 3d point
                    x = (j - depth_camera_intrinsics[0][2]) * d / depth_camera_intrinsics[0][0]
                    y = (i - depth_camera_intrinsics[1][2]) * d / depth_camera_intrinsics[1][1]
                    z = d
        
                    # Move the point to the camera frame
                    x1 = camera_extrinsics[0][0] * x + camera_extrinsics[0][1] * y + camera_extrinsics[0][2] * z + camera_extrinsics[0][3]
                    y1 = camera_extrinsics[1][0] * x + camera_extrinsics[1][1] * y + camera_extrinsics[1][2] * z + camera_extrinsics[1][3]
                    z1 = camera_extrinsics[2][0] * x + camera_extrinsics[2][1] * y + camera_extrinsics[2][2] * z + camera_extrinsics[2][3]
        
                    u = color_camera_intrinsics[0][0] * (x1  / z1) + color_camera_intrinsics[0][2]
                    v = color_camera_intrinsics[1][1] * (y1  / z1) + color_camera_intrinsics[1][2]
                    int_u = round(u)
                    int_v = round(v)
                    if(int_v != i):
                        print(f'v -> {v} and i -> {i}') # This should never be printed
                    if int_u >= 0 and int_u < (len(image[0]) - 1) and int_v >= 0 and int_v < len(image):
                        if depth_image_show is not None:
                            image[int_v][int_u] = depth_image_show[i][j][0]
                            image[int_v][int_u + sign] = depth_image_show[i][j][0]
                        else:
                            image[int_v][int_u] = z1
                            image[int_v][int_u + sign] = z1
            return image
        
        def create_pipeline(ALIGN_SOCKET):
            pipeline = dai.Pipeline()
        
            # Create ToF node
            tof = pipeline.create(dai.node.ToF)
            tof.setNumShaves(4)
        
            # Configure the ToF node
            tofConfig = tof.initialConfig.get()
            tofConfig.enableFPPNCorrection = True
            tofConfig.enableOpticalCorrection = True
            tofConfig.enableWiggleCorrection = True
            tofConfig.enableTemperatureCorrection = True
            tofConfig.phaseUnwrappingLevel = 4
            tof.initialConfig.set(tofConfig)
        
            # Input for ToF configuration
            xinTofConfig = pipeline.create(dai.node.XLinkIn)
            xinTofConfig.setStreamName("tofConfig")
            xinTofConfig.out.link(tof.inputConfig)
        
            # Create ToF camera node
            cam_tof = pipeline.create(dai.node.Camera)
            cam_tof.setFps(20)
            cam_tof.setImageOrientation(dai.CameraImageOrientation.ROTATE_180_DEG)
            cam_tof.setBoardSocket(dai.CameraBoardSocket.CAM_A)
            cam_tof.raw.link(tof.input)
        
            # Create ColorCamera nodes for stereo pair
            colorLeft = pipeline.create(dai.node.ColorCamera)
            colorRight = pipeline.create(dai.node.ColorCamera)
        
        
            # Configure ColorCameras
            colorLeft.setBoardSocket(dai.CameraBoardSocket.CAM_B)
            colorRight.setBoardSocket(dai.CameraBoardSocket.CAM_C)
            colorLeft.setResolution(dai.ColorCameraProperties.SensorResolution.THE_800_P)
            colorRight.setResolution(dai.ColorCameraProperties.SensorResolution.THE_800_P)
            colorLeft.setFps(20)
            colorRight.setFps(20)
            colorLeft.setInterleaved(False)
            colorRight.setInterleaved(False)
            colorLeft.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
            colorRight.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
            #colorLeft.setImageOrientation(dai.CameraImageOrientation.NORMAL)
            #colorRight.setImageOrientation(dai.CameraImageOrientation.NORMAL)
        
            #colorLeft.setIspScale(2, 2)  # Corrected line
            #colorRight.setIspScale(2, 1)  # Corrected line
        
        
            # Create StereoDepth node
            stereo = pipeline.create(dai.node.StereoDepth)
            stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
            stereo.initialConfig.setMedianFilter(dai.MedianFilter.MEDIAN_OFF)
            stereo.setLeftRightCheck(True)
            stereo.setExtendedDisparity(False)
            stereo.setSubpixel(False)
            stereo.setDepthAlign(ALIGN_SOCKET)
        
            # Link the RAW outputs of the ColorCameras to the StereoDepth node
            colorLeft.isp.link(stereo.left)
            colorRight.isp.link(stereo.right)
        
        
            # Create Sync node
            sync = pipeline.create(dai.node.Sync)
            sync.setSyncThreshold(timedelta(milliseconds=50))
        
            # Link outputs to Sync node with specified input names
            tof.depth.link(sync.inputs["depth_tof"])
            stereo.depth.link(sync.inputs["depth_stereo"])
            stereo.rectifiedLeft.link(sync.inputs["left_img"])
            stereo.rectifiedRight.link(sync.inputs["right_img"])
            colorLeft.isp.link(sync.inputs["rgb_img"])  # Corrected line
        
            # Create XLinkOut node
            xout = pipeline.create(dai.node.XLinkOut)
            xout.setStreamName("sync_out")
            sync.out.link(xout.input)
        
            return pipeline
        
        def get_calib(RGB_SOCKET, ALIGN_SOCKET, depthSize, rgbSize):
            calibData = device.readCalibration2()
            M1 = np.array(calibData.getCameraIntrinsics(ALIGN_SOCKET, *depthSize))
            D1 = np.array(calibData.getDistortionCoefficients(ALIGN_SOCKET))
            M2 = np.array(calibData.getCameraIntrinsics(RGB_SOCKET, *rgbSize))
            D2 = np.array(calibData.getDistortionCoefficients(RGB_SOCKET))
            try:
                T = (
                    np.array(calibData.getCameraTranslationVector(ALIGN_SOCKET, RGB_SOCKET, False))
                    * 10
                )  # to mm for matching the depth
            except:
                T = np.array([0.0, 0.0, 0.001])
            try:
                R = np.array(calibData.getCameraExtrinsics(ALIGN_SOCKET, RGB_SOCKET, False))[
                0:3, 0:3
                ]
            except:
                R = np.eye(3)
            TARGET_MATRIX = M1
            lensPosition = calibData.getLensPosition(RGB_SOCKET)
            return M1, D1, M2, D2, T, R, TARGET_MATRIX
        
        def getAlignedDepth(frameDepth, M1, D1, M2, D2, T, R, TARGET_MATRIX, depthSize,rgbSize):
            R1, R2, _, _, _, _, _ = cv2.stereoRectify(M1, D1, M2, D2, (100, 100), R, T)  # The (100,100) doesn't matter as it is not used for calculating the rotation matrices
            leftMapX, leftMapY = cv2.initUndistortRectifyMap(M1, None, R1, TARGET_MATRIX, depthSize, cv2.CV_32FC1)
            depthRect = cv2.remap(frameDepth, leftMapX, leftMapY, cv2.INTER_NEAREST)
            newR = np.dot(R2, np.dot(R, R1.T))  # Should be very close to identity
            newT = np.dot(R2, T)
            combinedExtrinsics = np.eye(4)
            combinedExtrinsics[0:3, 0:3] = newR
            combinedExtrinsics[0:3, 3] = newT
            depthAligned = reprojection(depthRect, TARGET_MATRIX, combinedExtrinsics, TARGET_MATRIX)
            # Rotate the depth to the RGB frame
            R_back = R2.T
            mapX, mapY = cv2.initUndistortRectifyMap(TARGET_MATRIX, None, R_back, M2, rgbSize, cv2.CV_32FC1)
            outputAligned = cv2.remap(depthAligned, mapX, mapY, cv2.INTER_NEAREST)
            return outputAligned
        
        MIN_DEPTH = 500  # mm
        MAX_DEPTH = 10000  # mm
        def colorizeDepth(frameDepth, minDepth=MIN_DEPTH, maxDepth=MAX_DEPTH):
            invalidMask = frameDepth == 0
            # Log the depth, minDepth and maxDepth
            logDepth = np.log(frameDepth, where=frameDepth != 0)
            logMinDepth = np.log(minDepth)
            logMaxDepth = np.log(maxDepth)
            depthFrameColor = np.interp(logDepth, (logMinDepth, logMaxDepth), (0, 255)).astype(
                np.uint8
            )
            depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_JET)
            # Set invalid depth pixels to black
            depthFrameColor[invalidMask] = 0
            return depthFrameColor
        
        RGB_SOCKET = dai.CameraBoardSocket.RGB
        TOF_SOCKET = dai.CameraBoardSocket.CAM_A
        LEFT_SOCKET = dai.CameraBoardSocket.LEFT
        RIGHT_SOCKET = dai.CameraBoardSocket.RIGHT
        ALIGN_SOCKET = RIGHT_SOCKET
        
        COLOR_RESOLUTION = dai.ColorCameraProperties.SensorResolution.THE_1080_P
        LEFT_RIGHT_RESOLUTION = dai.MonoCameraProperties.SensorResolution.THE_800_P
        toFSize =  (640, 480)
        rgbSize = (1280, 800)
        rgbWeight = 0.4
        depthWeight = 0.6
        
        def updateBlendWeights(percent_rgb):
            """
            Update the rgb and depth weights used to blend depth/rgb image
        
            @param[in] percent_rgb The rgb weight expressed as a percentage (0..100)
            """
            global depthWeight
            global rgbWeight
            rgbWeight = float(percent_rgb) / 100.0
            depthWeight = 1.0 - rgbWeight
        
        if __name__ == '__main__':
            pipeline = create_pipeline(ALIGN_SOCKET)
            rgb_depth_window_name = "rgb-depth"
        
            with dai.Device(pipeline) as device:
                cv2.namedWindow(rgb_depth_window_name)
                cv2.createTrackbar(
                "RGB Weight %",
                rgb_depth_window_name,
                int(rgbWeight * 100),
                100,
                updateBlendWeights,
                )
                # Create output queue
                q_sync = device.getOutputQueue(name="sync_out", maxSize=4, blocking=False)
                try:
                    M1, D1, M2, D2, T, R, TARGET_MATRIX = get_calib(RGB_SOCKET, ALIGN_SOCKET, toFSize, rgbSize)
                except:
                    raise
                # Read calibration data
                calibration_handler = device.readCalibration()
                camera_names = {
                    dai.CameraBoardSocket.CAM_B: 'cam_b',
                    dai.CameraBoardSocket.CAM_C: 'cam_c',
                    dai.CameraBoardSocket.CAM_A: 'tof'
                }
        
                # Create timestamped directory
                timestamp = time.strftime("%Y%m%d_%H%M%S")
                save_dir = os.path.join("data", timestamp)
                os.makedirs(save_dir, exist_ok=True)
        
                extrinsics_coeffs_tof_cam_b = calibration_handler.getCameraExtrinsics(dai.CameraBoardSocket.CAM_A, dai.CameraBoardSocket.CAM_B)
                extrinsics_coeffs_cam_b_tof = calibration_handler.getCameraExtrinsics(dai.CameraBoardSocket.CAM_B, dai.CameraBoardSocket.CAM_A)
                extrinsics_coeffs_tof_cam_c = calibration_handler.getCameraExtrinsics(dai.CameraBoardSocket.CAM_A, dai.CameraBoardSocket.CAM_C)
        
                # Save calibration data into the folder
                calib_data = {}
                for camera_socket, camera_name in camera_names.items():
                    intrinsics = calibration_handler.getCameraIntrinsics(camera_socket)
                    dist_coeffs = calibration_handler.getDistortionCoefficients(camera_socket)
                    calib_data[camera_name] = {
                        'intrinsics': intrinsics,
                        'distortion_coefficients': dist_coeffs
                    }
        
                calib_data['extrinsics'] = {
                    'tof_cam_b': extrinsics_coeffs_tof_cam_b,
                    'cam_b_tof': extrinsics_coeffs_cam_b_tof,
                    'tof_cam_c': extrinsics_coeffs_tof_cam_c
        
                }
                calibration_file = os.path.join(save_dir, "calibration.json")
                with open(calibration_file, 'w') as f:
                    json.dump(calib_data, f, indent=4)
        
                frame_counter = 0
                while True:
                    # Get synchronized messages
                    msgGrp = q_sync.get()
        
                    frames = {}
                    for name, msg in msgGrp:
                        frames[name] = msg.getCvFrame()
        
                    if len(frames) == 5:
                        # Process the frames
                        depth_tof_frame = frames['depth_tof']
                        depth_stereo_frame = frames['depth_stereo']
                        left_frame = frames['left_img']
                        right_frame = frames['right_img']
                        rgb_frame = frames['rgb_img']
        
                        # Save the frames
                        depth_tof_filename = os.path.join(save_dir, f"depth_tof_{frame_counter:06d}.npy")
                        depth_stereo_filename = os.path.join(save_dir, f"depth_stereo_{frame_counter:06d}.npy")
                        left_filename = os.path.join(save_dir, f"left_img_{frame_counter:06d}.png")
                        right_filename = os.path.join(save_dir, f"right_img_{frame_counter:06d}.png")
                        rgb_filename = os.path.join(save_dir, f"rgb_img_{frame_counter:06d}.png")
        
                        np.save(depth_tof_filename, depth_tof_frame)
                        np.save(depth_stereo_filename, depth_stereo_frame)
                        cv2.imwrite(left_filename, left_frame)
                        cv2.imwrite(right_filename, right_frame)
                        cv2.imwrite(rgb_filename, rgb_frame)
        
                        # Optional: Display the images and depth maps
                        # Normalize and colorize depth maps for visualization
                        depth_tof_display = cv2.normalize(depth_tof_frame, None, 0, 255, cv2.NORM_MINMAX)
                        depth_tof_display = np.uint8(depth_tof_display)
                        depth_tof_display = cv2.applyColorMap(depth_tof_display, cv2.COLORMAP_JET)
                        cv2.imshow("Depth ToF", depth_tof_display)
        
                        depth_stereo_display = cv2.normalize(depth_stereo_frame, None, 0, 255, cv2.NORM_MINMAX)
                        depth_stereo_display = np.uint8(depth_stereo_display)
                        depth_stereo_display = cv2.applyColorMap(depth_stereo_display, cv2.COLORMAP_JET)
                        cv2.imshow("Depth Stereo", depth_stereo_display)
        
                        cv2.imshow("Left Image", left_frame)
                        cv2.imshow("Right Image", right_frame)
                        cv2.imshow("RGB Image", rgb_frame)
                        h, w = depth_stereo_frame.shape[:2]
                        M1_r, D1_r, M2_r, D2_r, T_r, R_r, TARGET_MATRIX_r = get_calib(RIGHT_SOCKET, TOF_SOCKET, toFSize, (w, h))
                        alignedFrame = depth_stereo_frame
                        alignedDepth = getAlignedDepth(depth_tof_frame, M1_r, D1_r, M2_r, D2_r, T_r, R_r, TARGET_MATRIX_r, toFSize,(w, h))
                        frame_counter += 1
        
                        alignedDepthColorized = colorizeDepth(alignedDepth)
                        alignedFrame = colorizeDepth(alignedFrame)
                        #mapX, mapY = cv2.initUndistortRectifyMap(
                        #    M2_r, D2_r, None, M2_r, (w,h), cv2.CV_32FC1
                        #)
                        #alignedFrame = cv2.remap(alignedFrame, mapX, mapY, cv2.INTER_LINEAR)
                        cv2.imshow("Aligned Image", alignedFrame)
                        cv2.imshow("Aligned depth Image", alignedDepthColorized)
                        #cv2.waitKey(0)
        
                        blended = cv2.addWeighted(alignedFrame, rgbWeight, alignedDepthColorized, depthWeight, 0)
                        cv2.imshow(rgb_depth_window_name, blended)
                        # Exit condition
                        if cv2.waitKey(1) == ord('q'):
                            break
        
                device.close()
                print('Data collection complete.')

        The script aims to align TOF to depth.

        LMK if it works. If it doesn't, either intrinsics or extrinsics are bad.

        Thanks,
        Jaka

          jakaskerl
          This is the error I ran into:
          line 219, in <module>

          **pipeline = create_pipeline(ALIGN_SOCKET)**
          
                     **^^^^^^^^^^^^^^^^^^^^^^^^^^^^^**

          File "s:\DEPT\SVM4\Shared\Crossfunctional_Work\Projects\DepthCameras\LuxonisDepthAI\test_run\jimmy.py", line 61, in create_pipeline

          **tof.setNumShaves(4)**
          
          **^^^^^^^^^^^^^^^^**

          AttributeError: 'depthai.node.ToF' object has no attribute 'setNumShaves'

            jakaskerl
            Thank you for your response. I updated depthai within my conda environment, i was on version 2.25.1.0 and now I am at 2.28.0.0. I then proceed to run the code that you gave me and it successfully ran. However it was extremely lagging, I can only assume that the behavior occurred due to the multiple streams that were outputed…left,right image, rgb, depth tof, stereo and etc.

            This is the results of what were outputted. Is this expected? Or do I still have to recalibrate my camera? In my opinion the rgb depth seems to improved once again, but since the multiple streams caused lag. I was unable to fully conclude much. Is it possible for me to edit this script to capture the rgb-depth ,stereo depth and tof depth and save them as .ply files to view them as a point cloud? I proved the real image so you can understand the environment that I am in and also see the objects that I am capturing. If I have said anything that is incorrect, please correct me 🙂.

              @jakaskerl
              One last thing here is the data from the calibration.json, which was created from the script along with the .npy files. With the new script that you gave me, do I have to add in my intrinsic and extrinsic parameters as I did before in a format like this? I asked a similar question before and I remember you saying that I should add it to the/a script that captures the pcd. However this files generates .npy files for stereo,tof,left,right and rgb. I am able to convert that .npy file into a point cloud, the results will be pasted at the bottom.
              :
              "

              RGB_INTRINSICS = np.array([

              [836.2461547851562, 0.0, 656.4282836914062],

              [0.0, 845.6265869140625, 439.0591125488281],

              [0.0, 0.0, 1.0]
              I add the above parameters to a both the script you gave me and a script that convers .npy and depth png to a point cloud.

              ])

              **
              TOF_INTRINSICS = np.array([    [494.3519287109375, 0.0, 321.8478088378906],    [0.0, 499.4835205078125, 258.3044128417969],    [0.0, 0.0, 1.0]])**

              "
              {

              "cam_b": {

              "intrinsics": [

              [

              842.6837768554688,

              0.0,

              673.1340942382812

              ],

              [

              0.0,

              851.867431640625,

              412.4818115234375

              ],

              [

              0.0,

              0.0,

              1.0

              ]

              ],

              "distortion_coefficients": [

              -9.116254806518555,

              262.5550842285156,

              0.007134947460144758,

              -0.0009857615223154426,

              1347.274169921875,

              -9.195904731750488,

              260.98687744140625,

              1308.9786376953125,

              0.0,

              0.0,

              0.0,

              0.0,

              0.0,

              0.0

              ]

              },

              "cam_c": {

              "intrinsics": [

              [

              836.2461547851562,

              0.0,

              656.4282836914062

              ],

              [

              0.0,

              845.6265869140625,

              439.0591125488281

              ],

              [

              0.0,

              0.0,

              1.0

              ]

              ],

              "distortion_coefficients": [

              -5.861973762512207,

              5.3061065673828125,

              0.005871884059160948,

              0.00142634566873312,

              88.46317291259766,

              -6.072614669799805,

              7.037742614746094,

              83.25321960449219,

              0.0,

              0.0,

              0.0,

              0.0,

              0.0,

              0.0

              ]

              },

              "tof": {

              "intrinsics": [

              [

              494.3519287109375,

              0.0,

              321.8478088378906

              ],

              [

              0.0,

              499.4835205078125,

              258.3044128417969

              ],

              [

              0.0,

              0.0,

              1.0

              ]

              ],

              "distortion_coefficients": [

              -8.41947078704834,

              64.94961547851562,

              0.006374209653586149,

              0.0031096169259399176,

              -82.0173110961914,

              -8.491059303283691,

              65.28081512451172,

              -83.71215057373047,

              0.0,

              0.0,

              0.0,

              0.0,

              0.0,

              0.0

              ]

              },

              "extrinsics": {

              "tof_cam_b": [

              [

              0.9998435974121094,

              0.008253674954175949,

              -0.015642309561371803,

              7.521265506744385

              ],

              [

              -0.00823507271707058,

              0.9999653100967407,

              0.0012532849796116352,

              0.08689548820257187

              ],

              [

              0.015652108937501907,

              -0.0011242730543017387,

              0.999876856803894,

              -0.34154483675956726

              ],

              [

              0.0,

              0.0,

              0.0,

              1.0

              ]

              ],

              "cam_b_tof": [

              [

              0.9998435974121094,

              -0.00823507271707058,

              0.015652108937501907,

              -7.5140275955200195

              ],

              [

              0.008253674954175949,

              0.9999653100967407,

              -0.0011242730543017387,

              -0.14935454726219177

              ],

              [

              -0.015642309561371803,

              0.0012532849796116352,

              0.999876856803894,

              0.45904383063316345

              ],

              [

              0.0,

              0.0,

              0.0,

              1.0

              ]

              ],

              "tof_cam_c": [

              [

              0.9990038275718689,

              0.007529935333877802,

              -0.04398486390709877,

              3.5399038791656494

              ],

              [

              -0.007824795320630074,

              0.9999480247497559,

              -0.006535347551107407,

              0.06738178431987762

              ],

              [

              0.04393336549401283,

              0.006873009726405144,

              0.9990108013153076,

              -0.23108027875423431

              ],

              [

              0.0,

              0.0,

              0.0,

              1.0

              ]

              ]

              }

              }

              The image above is the result one of the .npy tof files that were created.

                gdeanrexroth
                Alignment looks good! The multiple streams are the cause of lag (displaying them doesn't help either). No need to recalibrate 🙂.

                gdeanrexroth With the new script that you gave me, do I have to add in my intrinsic and extrinsic parameters as I did before in a format like this? I asked a similar question before and I remember you saying that I should add it to the/a script that captures the pcd.

                The script that creates the pointcloud. If you wish to convert the depth to pointcloud, you need intrinsics. You can also just use the pointcloud node and this will all be done on device.

                The layering your image shows, is because your depth is limited to 95 disparity values. If you turn on subpixel, this should be much better since you now have 754(don't quote me on the value) values which results in smoother transition.

                Thanks,
                Jaka

                  jakaskerl
                  Ahh okay, i misunderstood. I will try both methods of adding the node or just converting depth to point cloud. The JSON created a the calibration file after the code you gave me ran. Do I take the intrinsic parameters from there or do I have use the parameters from the calibration.py 🙂 ? Below is an example script that I am using to display my depth color image and my .npy file which then converts the depth image into a point cloud. I am still unfamiliar with .npy files, is it neccesary for me to include into this script:

                  import matplotlib.image as mpimg

                  import re

                  import open3d as o3d

                  import numpy as np

                  import matplotlib.pyplot as plt

                  # Define camera intrinsic parameters for both RGB and TOF

                  RGB_INTRINSICS = np.array([

                  [842.6837768554688, 0.0, 673.1340942382812],

                  [0.0, 851.867431640625, 412.4818115234375],

                  [0.0, 0.0, 1.0]])

                  TOF_INTRINSICS = np.array([

                  [494.3519287109375, 0.0, 321.8478088378906],
                  
                  [0.0, 499.4835205078125, 258.3044128417969],
                  
                  [0.0, 0.0, 1.0]

                  ])

                  # This is a special function used for reading NYU pgm format

                  # as it is written in big endian byte order.

                  def read_nyu_pgm(filename, byteorder='>'):

                  with open(filename, 'rb') as f:
                  
                      buffer = f.read()
                  
                  try:
                  
                      header, width, height, maxval = re.search(
                  
                          b"(^P5\\s(?:\\s\*#.\*[\\r\\n])\*"
                  
                          b"(\\d+)\\s(?:\\s\*#.\*[\\r\\n])\*"
                  
                          b"(\\d+)\\s(?:\\s\*#.\*[\\r\\n])\*"
                  
                          b"(\\d+)\\s(?:\\s\*#.\*[\\r\\n]\\s)\*)", buffer).groups()
                  
                  except AttributeError:
                  
                      raise ValueError("Not a raw PGM file: '%s'" % filename)
                  
                  img = np.frombuffer(buffer,
                  
                                      dtype=byteorder + 'u2',
                  
                                      count=int(width) \* int(height),
                  
                                      offset=len(header)).reshape((int(height), int(width)))
                  
                  img_out = img.astype('u2')
                  
                  return img_out

                  print("Read dataset")

                  # Use your specified paths for RGB and depth images

                  color_raw = o3d.io.read_image(r"S:\DEPT\SVM4\Shared\Crossfunctional_Work\Projects\DepthCameras\LuxonisDepthAI\test_run\data\20241023_132728\rgb_img_000005.png")

                  depth_array = np.load(r"S:\DEPT\SVM4\Shared\Crossfunctional_Work\Projects\DepthCameras\LuxonisDepthAI\test_run\data\20241023_132728\depth_stereo_000004.npy")

                  # Convert numpy depth array to Open3D image

                  depth_raw = o3d.geometry.Image(depth_array.astype(np.float32))

                  color = o3d.geometry.Image(np.asarray(color_raw))

                  # Create an Open3D RGBD image using your data

                  rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(

                  color_raw, depth_raw, convert_rgb_to_intensity=False)

                  print(rgbd_image)

                  plt.subplot(1, 2, 1)

                  plt.title('RGB image')

                  plt.imshow(rgbd_image.color)

                  plt.subplot(1, 2, 2)

                  plt.title('Depth image')

                  plt.imshow(rgbd_image.depth)

                  plt.show()

                  # Create point cloud from RGBD image using custom camera intrinsics

                  intrinsic = o3d.camera.PinholeCameraIntrinsic(

                  width=1280,
                  
                  height=800,
                  
                  fx=RGB_INTRINSICS[0, 0],
                  
                  fy=RGB_INTRINSICS[1, 1],
                  
                  cx=RGB_INTRINSICS[0, 2],
                  
                  cy=RGB_INTRINSICS[1, 2]

                  )

                  pcd = o3d.geometry.PointCloud.create_from_rgbd_image(

                  rgbd_image,
                  
                  intrinsic)

                  # Flip it, otherwise the pointcloud will be upside down

                  pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])

                  o3d.visualization.draw_geometries([pcd])

                  Outcome of script that CREATES the point cloud. And yes this before me trying the point cloud node. Intrinsincs are in but I am unsure if they are placed in the right area or format. Thank you for your reply 🙂 :

                  10/25/2024 8:17AM
                  this is my attempt to insert the point cloud while subpixel is set to True.

                  Create StereoDepth node

                  stereo = pipeline.create(dai.node.StereoDepth)
                  
                  stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
                  
                  stereo.initialConfig.setMedianFilter(dai.MedianFilter.MEDIAN_OFF)
                  
                  stereo.setLeftRightCheck(True)
                  
                  stereo.setExtendedDisparity(False)
                  
                  stereo.setSubpixel(True) # this was False at first but Jaka recommended True to get smoother point cloud
                  
                  stereo.setDepthAlign(ALIGN_SOCKET)
                  
                  # Link the RAW outputs of the ColorCameras to the StereoDepth node
                  
                  colorLeft.isp.link(stereo.left)
                  
                  colorRight.isp.link(stereo.right)
                  
                  pc_node = pipeline.create(dai.node.PointCloud)
                  
                  stereo.depth.link(pc_node.depth)
                  
                  pc_out = pipeline.create(dai.node.XLinkOut)
                  
                  pc_out.setStreamName("pc_out")
                  
                  pc_node.out.link(pc_out.input)
                  
                  # Create Sync node
                  
                  sync = pipeline.create(dai.node.Sync)
                  
                  sync.setSyncThreshold(timedelta(milliseconds=50))
                  
                  # Link outputs to Sync node with specified input names
                  
                  tof.depth.link(sync.inputs["depth_tof"])
                  
                  stereo.depth.link(sync.inputs["depth_stereo"])
                  
                  stereo.rectifiedLeft.link(sync.inputs["left_img"])
                  
                  stereo.rectifiedRight.link(sync.inputs["right_img"])
                  
                  colorLeft.isp.link(sync.inputs["rgb_img"])  # Corrected line
                  
                  # Create XLinkOut node
                  
                  xout = pipeline.create(dai.node.XLinkOut)
                  
                  xout.setStreamName("sync_out")
                  
                  sync.out.link(xout.input)
                  
                  return pipeline

                    gdeanrexroth Do I take the intrinsic parameters from there or do I have use the parameters from the calibration.py 🙂 ?

                    Take intrinsics from eeprom calibration.

                    Thanks,
                    Jaka

                      jakaskerl
                      Okay I have been using the those numbers within the file that creates the point cloud. I am still trying to use ICP to stitch the point clouds. My results vary but overall are still giving the similar results.

                      I am using a simple script that just displays the .ply file which allow me to crop them. But here is the version of the script that i am using.
                      import numpy as np

                      import open3d as o3d

                      def demo_crop_geometry():

                      print("Demo for manual geometry cropping")
                      
                      print("1) Press 'Y' twice to align geometry with negative direction of y-axis")
                      
                      print("2) Press 'K' to lock screen and to switch to selection mode")
                      
                      print("3) Drag for rectangle selection,")
                      
                      print("   or use ctrl + left click for polygon selection")
                      
                      print("4) Press 'C' to get a selected geometry")
                      
                      print("5) Press 'S' to save the selected geometry")
                      
                      print("6) Press 'F' to switch to freeview mode")
                      
                      
                      
                      # Load a single point cloud file
                      
                      # pcd = o3d.io.read_point_cloud(r'S:\\DEPT\\SVM4\\Shared\\Crossfunctional_Work\\Projects\\DepthCameras\\LuxonisDepthAI\\test_run\\Image and PointCloud of Material For AutoStore\\capture_1_2024_10_21_12_06_01\\tof_pointcloud_1.ply')
                      
                      # pcd = o3d.io.read_point_cloud(r"S:\\DEPT\\SVM4\\Shared\\Crossfunctional_Work\\Projects\\DepthCameras\\LuxonisDepthAI\\test_run\\GT_CUP\\MANUALLY_MODIFIED\\tof_pointcloud_5.ply")
                      
                      pcd = o3d.io.read_point_cloud(r'S:\\DEPT\\SVM4\\Shared\\Crossfunctional_Work\\Projects\\DepthCameras\\LuxonisDepthAI\\test_run\\GT_CUP\\MANUALLY_MODIFIED\\cropped_cup_5.ply')
                      
                      # Visualize and edit the point cloud
                      
                      o3d.visualization.draw_geometries_with_editing([pcd])

                      if name == "main":

                      demo_crop_geometry()

                      @jakaskerl
                      overall for my project this is the ending result my team and I are looking for.

                      I took this example point cloud from the ICP registration website. But we are still struggling to get a result that resembles that. Even at the bare minimum state I am struggling to display/ distribute a point cloud that resembles the object that is in front of the camera.

                      A minor issue that I am experiencing is with the numba library. Every so often I will quit the code so i can view the png's and .npy files. I will run the code again and it will display this error message
                      "2.27.0.0

                      Traceback (most recent call last):

                      File "s:\DEPT\SVM4\Shared\Crossfunctional_Work\Projects\DepthCameras\LuxonisDepthAI\test_run\tree_s.py", line 9, in <module>

                      from numba import jit, prange

                      ModuleNotFoundError: No module named 'numba'"
                      But whenever it does work, it displays the current depthai that I have installed which is 2.28.0.0 and successfully runs the code. I am sure that this conflicting issue is on my end. But I am bringing it to your attention.

                      EDIT
                      My last struggle is adding the point cloud node to the script that you gave me. I followed the instructions that was listed on the website however I am struggling to enable it within the script correctly.

                      Here is another point cloud displayed in meshlab application:

                        gdeanrexroth

                        gdeanrexroth My last struggle is adding the point cloud node to the script that you gave me. I followed the instructions that was listed on the website however I am struggling to enable it within the script correctly.

                        I'm not entirely sure what you mean. How do you want to enable it and where should it show up?

                        Thanks,
                        Jaka

                          jakaskerl
                          Maybe I misunderstood your previous response. Whenever you mentioned that I could add the point cloud node into the updated undistorted script to visualize it. I am attempting to that but I am unsuccessful in creating the point cloud node.

                          On another note, I have tried to use depthai viewer to see if the point cloud looks any different. However it updates or installs everytime i run the command "python -m depthai_viewer". it successfully installs yet it does not recognize the camera. I will try to update my depthai-viewer and follow instructions again but it was working two months. I haven't used it since then.

                          gdeanrexroth
                          @jakaskerl
                          And to come back to this post, I was unable to get the point clouds from this script to actually work. More so the script ran but it and i was able to still capture depth images and .npy files. They display point cloud that are layered. As someone pointed out, the example videos that you guys displayed showed layers within that point cloud. As i saw a comment of yours on another thread concluded that there isn't much more to do to make it smoother. However once i convert the depth images and .npy files to point cloud. It layered extremely. The script that creates the point cloud has the rgb and tof intrinsics in them. Still it displays in a unusual fashion.

                          jakaskerl
                          So I was able to only stream the rgb-depth align window and this was the results. I mentioned before that I was going to attempt to add in the point cloud node like you suggested. I am still working on it.

                          For the results below. I commented out all the things that are in the screenshot below. Can you or your team try this method? I think the alignment was at a still state due to lag. The multiple streams slowed down the live stream, since it had to process a lot.