jakaskerl
Nice!
Thank you, I will look at this updated file. I will try to implement this into my tof-depth point cloud script. However will you guys create or update the tof-depth script to align with the new changes?

    jakaskerl

    With adjustments being done to the TOF-RGB alignment script, does this affect the TOF-PointCloud script that your team has created?

      @jakaskerl
      My last question for now is in regard of the camera intrinsic and extrinsic values. I know that extrinsic values are retrieved from calibration and they do not affect the focal length or FOV. More so its location and orientation. In contrast of the intrinsic values which can be retrieved by a python script that you guys have created. The intrinsic parameters of a camera depend on how it captures the images. Parameters such as focal length, aperture, field-of-view, resolution, etc govern the intrinsic matrix of a camera model. Does the intrinsic or extrinsic value need to be in the script that captures the point cloud(pcd or ply file)? Or does it need to be implemented into the script that does the icp or global registration?

      I assume tof-rgb alignment is not affected by the implementation of the values however I am unsure that these values do play an affect on how the camera captures point cloud or capture depth.

      Python script from here:
      For testing purposes I have added my intrinsic values and and pinhole intrinsic in bold to see if my point cloud would look any different.

      import depthai as dai

      import numpy as np

      import cv2

      import time

      from datetime import timedelta

      import datetime

      import os

      import sys

      try:

      import open3d as o3d

      except ImportError:

      sys.exit("Critical dependency missing: Open3D. Please install it using the command: '{} -m pip install open3d' and then rerun the script.".format(sys.executable))

      FPS = 30

      RGB_SOCKET = dai.CameraBoardSocket.CAM_C

      TOF_SOCKET = dai.CameraBoardSocket.CAM_A

      ALIGN_SOCKET = RGB_SOCKET

      pipeline = dai.Pipeline()

      # Define sources and outputs

      camRgb = pipeline.create(dai.node.ColorCamera)

      tof = pipeline.create(dai.node.ToF)

      camTof = pipeline.create(dai.node.Camera)

      sync = pipeline.create(dai.node.Sync)

      align = pipeline.create(dai.node.ImageAlign)

      out = pipeline.create(dai.node.XLinkOut)

      pointcloud = pipeline.create(dai.node.PointCloud)

      # Camera intrinsic parameters (ensure I am using the correct calibration values)

      fx = 494.35192765 # Update with my calibrated value

      fy = 499.48351759 # Update with my calibrated value

      cx = 321.84779556 # Update with my calibrated value

      cy = 218.30442303 # Update with my calibrated value

      intrinsic = o3d.camera.PinholeCameraIntrinsic(width=640, height=480, fx=fx, fy=fy, cx=cx, cy=cy)

      # ToF settings

      camTof.setFps(FPS)

      camTof.setImageOrientation(dai.CameraImageOrientation.ROTATE_180_DEG)

      camTof.setBoardSocket(TOF_SOCKET)

      tofConfig = tof.initialConfig.get()

      # choose a median filter or use none - using the median filter improves the pointcloud but causes discretization of the data

      tofConfig.median = dai.MedianFilter.KERNEL_7x7

      # tofConfig.median = dai.MedianFilter.KERNEL_5x5

      # tofConfig.median = dai.MedianFilter.KERNEL_7x7

      tof.initialConfig.set(tofConfig)

      # rgb settings

      camRgb.setBoardSocket(RGB_SOCKET)

      camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_800_P)

      camRgb.setFps(FPS)

      camRgb.setIspScale(3,4)

      depthSize = (1280,800) #PLEASE SET TO BE SIZE OF THE TOF STREAM

      rgbSize = camRgb.getIspSize()

      out.setStreamName("out")

      sync.setSyncThreshold(timedelta(seconds=(0.5 / FPS)))

      rgbSize = camRgb.getIspSize()

      # Linking

      camRgb.isp.link(sync.inputs["rgb"])

      camTof.raw.link(tof.input)

      tof.depth.link(align.input)

      # align.outputAligned.link(sync.inputs["depth_aligned"])

      align.outputAligned.link(pointcloud.inputDepth)

      sync.inputs["rgb"].setBlocking(False)

      camRgb.isp.link(align.inputAlignTo)

      pointcloud.outputPointCloud.link(sync.inputs["pcl"])

      sync.out.link(out.input)

      out.setStreamName("out")

      def colorizeDepth(frameDepth):

      invalidMask = frameDepth == 0
      
      try:
      
          minDepth = np.percentile(frameDepth[frameDepth != 0], 3)
      
          maxDepth = np.percentile(frameDepth[frameDepth != 0], 95)
      
          logDepth = np.log(frameDepth, where=frameDepth != 0)
      
          logMinDepth = np.log(minDepth)
      
          logMaxDepth = np.log(maxDepth)
      
          np.nan_to_num(logDepth, copy=False, nan=logMinDepth)
      
          logDepth = np.clip(logDepth, logMinDepth, logMaxDepth)
      
          depthFrameColor = np.interp(logDepth, (logMinDepth, logMaxDepth), (0, 255))
      
          depthFrameColor = np.nan_to_num(depthFrameColor)
      
          depthFrameColor = depthFrameColor.astype(np.uint8)
      
          depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_JET)
      
          depthFrameColor[invalidMask] = 0
      
      except IndexError:
      
          depthFrameColor = np.zeros((frameDepth.shape[0], frameDepth.shape[1], 3), dtype=np.uint8)
      
      except Exception as e:
      
          raise e
      
      return depthFrameColor

      rgbWeight = 0.4

      depthWeight = 0.6

      def updateBlendWeights(percentRgb):

      global depthWeight
      
      global rgbWeight
      
      rgbWeight = float(percentRgb) / 100.0
      
      depthWeight = 1.0 - rgbWeight

      with dai.Device(pipeline) as device:

      isRunning = True
      
      q = device.getOutputQueue(name="out", maxSize=4, blocking=False)
      
      vis = o3d.visualization.VisualizerWithKeyCallback()
      
      vis.create_window()
      
      pcd = o3d.geometry.PointCloud()
      
      coordinateFrame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=1000, origin=[0,0,0])
      
      vis.add_geometry(coordinateFrame)
      
      first = True
      
      view_control = vis.get_view_control()
      
      while isRunning:
      
          inMessage = q.get()
      
          inColor = inMessage["rgb"]
      
          inPointCloud = inMessage["pcl"]
      
          cvColorFrame = inColor.getCvFrame()
      
          cvRGBFrame = cv2.cvtColor(cvColorFrame, cv2.COLOR_BGR2RGB)
      
          cv2.imshow("color", cvColorFrame)
      
          key = cv2.waitKey(1)
      
          if key == ord('q'):
      
              break
      
          if key == ord('c'):
      
              print("saving...")
      
              current_time = datetime.datetime.now()
      
              formatted_time = current_time.strftime("%Y_%m_%d_%H_%M_%S")
      
              new_output = formatted_time
      
              os.mkdir(new_output)
      
              o3d.io.write_point_cloud(os.path.join(new_output, "tof_pointcloud.ply"), pcd)
      
              cv2.imwrite(os.path.join(new_output, "Image_of_material.png"), cvColorFrame)
      
              print(f"RGB point cloud saved to folder {new_output}")
      
          if inPointCloud:
      
              points = inPointCloud.getPoints().astype(np.float64)
      
              points[:, 1] = -points[:, 1]  # Invert Y axis
      
              pcd.points = o3d.utility.Vector3dVector(points)
      
              colors = (cvRGBFrame.reshape(-1, 3) / 255.0).astype(np.float64)
      
              pcd.colors = o3d.utility.Vector3dVector(colors)
      
              if first:
      
                  vis.add_geometry(pcd)
      
                  first = False
      
              else:
      
                  vis.update_geometry(pcd)
      
          vis.poll_events()
      
          vis.update_renderer()
      
      vis.destroy_window()

        apirrone Likely with depthai V3

        gdeanrexroth Yup.

        gdeanrexroth Does the intrinsic or extrinsic value need to be in the script that captures the point cloud(pcd or ply file)? Or does it need to be implemented into the script that does the icp or global registration?

        In the pointcloud generation. The idea is to create a colorized pointcloud -- depth needs to be aligned to RGB. This can only be done by knowing the extrinsics from RGB to stereo, and intrinsics of rgb and the rectified stereo frames.

        Thanks,
        Jaka

          jakaskerl

          Nice, thank you for the update. Overall until you guys fix the tof-rgb alignment and release the depthai V3. I can assume that I will not be able to make any more progress on my current project utilizing the ToF senor to generate point cloud. Until the Luxonis team fixes this issue, correct? I've tried stereo depth to generate point cloud but it gave me similar results in regard of misaligned point cloud, but I will try again.

          I believe that you placed a stereo depth point cloud in one the discussion threads that I have created. It does works however it generates the point cloud in a narrow shape. So I am still reading documentation on the different settings and parameters that are appropriate for me use case. Most of my objects will be 20cm to 50 cm away from the camera.

            jakaskerl Likely with depthai V3

            Ok, and any timeline on the release of this version ?

            I'm a little confused. If there is a bug in the ImageAlign node in firmware, how did you get such a perfectly aligned point cloud here ?

              gdeanrexroth

              gdeanrexroth Overall until you guys fix the tof-rgb alignment and release the depthai V3. I can assume that I will not be able to make any more progress on my current project utilizing the ToF senor to generate point cloud. Until the Luxonis team fixes this issue, correct?

              The new script I sent aims to fix this issue. We will probably just change the example (not sure what the current idea is for depthai). The only thing different seems to be the RGB undistortion. You can continue to develop the project just make sure you undistort the RGB camera.

              apirrone I'm a little confused. If there is a bug in the ImageAlign node in firmware, how did you get such a perfectly aligned point cloud here ?

              This was done here iirc.

              Thanks,
              Jaka

                jakaskerl
                So with the file that you sent me, I was able to run it. And it successfully displayed the tof and rgb color camera window. I then processed to apply a method for me to save both rgb-color camera and tof depth. Below are the examples. there is still misalignment(which i assume is expected right now), but it does seem to pick up objects that are behind my purple bottle. Along with the space between the back wall and the front of the cardboard box

                  gdeanrexroth The correct angle displays perfect alignment, but as a i rotate the .ply file you can see the gaps and holes. Even with pre and post processing filtering, it winds up the same. Better but still misaligned. I can and will continue my project however it heavily relies on displaying align material and parts point cloud. That's a huge part of the project with the camera. The expected results should look like the ToF Demo video.

                  @jakaskerl Here is somewhat of a better example.

                    @jakaskerl
                    More examples of the new script point cloud, some improvements are noticeable. But from the side again everything is not fully aligned.

                    @jakaskerl
                    With the pictures I attached above somewhat explains my side of the project as well. Without the fully, formed point cloud my team and I will not be able to view our material/parts in a 3d(point cloud) format. This results are with me undistorting the RGB camera. So I am still unsure if I can make much more progress on my side since the issue is being fixed internally by you and your team.

                      gdeanrexroth The correct angle displays perfect alignment, but as a i rotate the .ply file you can see the gaps and holes.

                      That is expected and is a result of occlusion.. This can't be fixed at all since information is missing.

                      gdeanrexroth So I am still unsure if I can make much more progress on my side since the issue is being fixed internally by you and your team.

                      The only fix on our part is include the RGB undistortion that was missed in the original release..

                      Thanks,
                      Jaka

                      jakaskerl

                      Undistorting the rgb doesn't help for me

                      Without rgb undistort :

                      With rgb undistort:

                      It's probably because I'm using fisheye lenses.
                      Using cv2.fisheye.initUndistortRectifyMap(...) doesn't help

                        jakaskerl
                        With undistorting not working properly are there any steps you recommend us to take? Or do we have to wait until depthai v3?

                        I doubt that this is my issue but can incorrect calibration of misalignment? I have tried undistorting but it seemed to not work. I am new to the computer vision world so I am unaware of few terms. This is my result of using undistorting

                          gdeanrexroth With undistorting not working properly are there any steps you recommend us to take? Or do we have to wait until depthai v3?

                          Should be working properly, just on on fisheye lenses.

                          gdeanrexroth This is my result of using undistorting

                          Did you use the ImageAlign node to align the tof and RGB? The RGB looks ok at first glance, so either extrinsics/intrinsics are incorrect or there is a mistake in aligning.

                          Thanks,
                          Jaka

                            jakaskerl
                            Yes I did use the image aligned node within my script. I used the tof-rgb alignment script that you provided, I added a key function that will allow me to capture and save the tof-rgb depth as a ply file. There are other ways that I can approach this however, I simply wanted to see how the rgb would look.
                            import numpy as np

                            import cv2

                            import depthai as dai

                            import time

                            from datetime import timedelta

                            # This example is intended to run unchanged on an OAK-D-SR-PoE camera

                            FPS = 30.0

                            RGB_SOCKET = dai.CameraBoardSocket.CAM_C

                            TOF_SOCKET = dai.CameraBoardSocket.CAM_A

                            ALIGN_SOCKET = RGB_SOCKET

                            # Define intrinsic parameters

                            RGB_INTRINSICS = np.array([

                            [494.3519287109375, 0.0, 321.8478088378906],
                            
                            [0.0, 499.4835205078125, 258.3044128417969],
                            
                            [0.0, 0.0, 1.0]

                            ])

                            TOF_INTRINSICS = np.array([

                            [842.6837768554688, 0.0, 673.1340942382812],
                            
                            [0.0, 851.867431640625, 412.4818115234375],
                            
                            [0.0, 0.0, 1.0]

                            ])

                            # Define camera resolutions

                            RGB_WIDTH, RGB_HEIGHT = 640, 480

                            TOF_WIDTH, TOF_HEIGHT = 1280, 800

                            class FPSCounter:

                            def __init__(self):
                            
                                self.frameTimes = []
                            
                            def tick(self):
                            
                                # record the current time for the FPS calculation
                            
                                now = time.time()
                            
                                self.frameTimes.append(now)
                            
                                self.frameTimes = self.frameTimes[-100:]
                            
                            def getFps(self):
                            
                                if len(self.frameTimes) <= 1:
                            
                                    return 0
                            
                                # Calculate the FPS based on the recorded frame times
                            
                                return (len(self.frameTimes) - 1) / (self.frameTimes[-1] - self.frameTimes[0])

                            def save_ply(rgb_image, depth_image, filename):

                            # Get dimensions of the RGB image
                            
                            height, width, _ = rgb_image.shape
                            
                            # Save as PLY file
                            
                            with open(filename, 'w') as ply_file:
                            
                                #write ply header
                            
                                ply_file.write('ply\\n')
                            
                                ply_file.write('format ascii 1.0\\n')
                            
                                ply_file.write(f'element vertex {height \* width}\\n')
                            
                                ply_file.write('property float x\\n')
                            
                                ply_file.write('property float y\\n')
                            
                                ply_file.write('property float z\\n')
                            
                                ply_file.write('property uchar red\\n')
                            
                                ply_file.write('property uchar green\\n')
                            
                                ply_file.write('property uchar blue\\n')
                            
                                ply_file.write('end_header\\n')
                            
                                
                            
                                # Convert depth image to point cloud using ToF intrinsics
                            
                                fx = TOF_INTRINSICS[0, 0]
                            
                                fy = TOF_INTRINSICS[1, 1]
                            
                                cx = TOF_INTRINSICS[0, 2]
                            
                                cy = TOF_INTRINSICS[1, 2]
                            
                                
                            
                                for v in range(height):
                            
                                    for u in range(width):
                            
                                        z = depth_image[v, u]  # Depth value
                            
                                        if z > 0:  # Ignore zero 
                            
                                            # calculate 3d coordinates
                            
                                            x = (u - cx) \* z / fx
                            
                                            y = (v - cy) \* z / fy
                            
                                            r, g, b = rgb_image[v, u]  # RGB color
                            
                                            #write the vertex data to PLY file
                            
                                            ply_file.write(f'{x} {y} {z} {r} {g} {b}\\n')

                            pipeline = dai.Pipeline()

                            # Define sources and outputs

                            camRgb = pipeline.create(dai.node.ColorCamera)

                            tof = pipeline.create(dai.node.ToF)

                            camTof = pipeline.create(dai.node.Camera)

                            sync = pipeline.create(dai.node.Sync)

                            align = pipeline.create(dai.node.ImageAlign)

                            out = pipeline.create(dai.node.XLinkOut)

                            # ToF settings

                            camTof.setFps(FPS)

                            camTof.setImageOrientation(dai.CameraImageOrientation.ROTATE_180_DEG)

                            camTof.setBoardSocket(TOF_SOCKET)

                            # rgb settings

                            camRgb.setBoardSocket(RGB_SOCKET)

                            camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_800_P)

                            camRgb.setFps(FPS)

                            camRgb.setIspScale(1, 1)

                            # defines image sizes

                            depthSize = (TOF_WIDTH, TOF_HEIGHT)

                            rgbSize = camRgb.getIspSize()

                            # set output stream name

                            out.setStreamName("out")

                            # configure synchronization threshold

                            sync.setSyncThreshold(timedelta(seconds=0.5 / FPS))

                            # Linking

                            camRgb.isp.link(sync.inputs["rgb"]) #link RGB camera output to sync node

                            camTof.raw.link(tof.input) #link TOF camera raw output to TOF node

                            tof.depth.link(align.input) #link TOF depth output to align node

                            align.outputAligned.link(sync.inputs["depth_aligned"]) #link aligned depth to sync node

                            sync.inputs["rgb"].setBlocking(False) #set rgb input as non-blocking

                            camRgb.isp.link(align.inputAlignTo) #link sync output to XLinkOut node

                            sync.out.link(out.input)

                            def colorizeDepth(frameDepth):

                            invalidMask = frameDepth == 0
                            
                            try:
                            
                                minDepth = np.percentile(frameDepth[frameDepth != 0], 3)
                            
                                maxDepth = np.percentile(frameDepth[frameDepth != 0], 95)
                            
                                logDepth = np.log(frameDepth, where=frameDepth != 0)
                            
                                logMinDepth = np.log(minDepth)
                            
                                logMaxDepth = np.log(maxDepth)
                            
                                np.nan_to_num(logDepth, copy=False, nan=logMinDepth)
                            
                                logDepth = np.clip(logDepth, logMinDepth, logMaxDepth)
                            
                                depthFrameColor = np.interp(logDepth, (logMinDepth, logMaxDepth), (0, 255))
                            
                                depthFrameColor = np.nan_to_num(depthFrameColor)
                            
                                depthFrameColor = depthFrameColor.astype(np.uint8)
                            
                                depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_JET)
                            
                                depthFrameColor[invalidMask] = 0
                            
                            except IndexError:
                            
                                depthFrameColor = np.zeros((frameDepth.shape[0], frameDepth.shape[1], 3), dtype=np.uint8)
                            
                            except Exception as e:
                            
                                raise e
                            
                            return depthFrameColor

                            rgbWeight = 0.4

                            depthWeight = 0.6

                            def updateBlendWeights(percentRgb):

                            global depthWeight
                            
                            global rgbWeight
                            
                            rgbWeight = float(percentRgb) / 100.0
                            
                            depthWeight = 1.0 - rgbWeight

                            # Connect to device and start pipeline

                            remapping = True

                            save_ply_flag = False

                            with dai.Device(pipeline) as device:

                            queue = device.getOutputQueue("out", 8, False)
                            
                            rgbDepthWindowName = "rgb-depth"
                            
                            cv2.namedWindow(rgbDepthWindowName)
                            
                            cv2.createTrackbar(
                            
                                "RGB Weight %",
                            
                                rgbDepthWindowName,
                            
                                int(rgbWeight \* 100),
                            
                                100,
                            
                                updateBlendWeights,
                            
                            )
                            
                            
                            
                            try:
                            
                                calibData = device.readCalibration2()
                            
                                M1 = np.array(calibData.getCameraIntrinsics(ALIGN_SOCKET, \*depthSize))
                            
                                D1 = np.array(calibData.getDistortionCoefficients(ALIGN_SOCKET))
                            
                                M2 = np.array(calibData.getCameraIntrinsics(RGB_SOCKET, \*rgbSize))
                            
                                D2 = np.array(calibData.getDistortionCoefficients(RGB_SOCKET))
                            
                                # Use the predefined intrinsics if available, otherwise use the calibration data
                            
                                if TOF_INTRINSICS is not None:
                            
                                    M1 = TOF_INTRINSICS
                            
                                if RGB_INTRINSICS is not None:
                            
                                    M2 = RGB_INTRINSICS
                            
                                try:
                            
                                    T = np.array(calibData.getCameraTranslationVector(ALIGN_SOCKET, RGB_SOCKET, False)) \* 10
                            
                                except RuntimeError:
                            
                                    T = np.array([0.0, 0.0, 0.001])
                            
                                try:
                            
                                    R = np.array(calibData.getCameraExtrinsics(ALIGN_SOCKET, RGB_SOCKET, False))[0:3, 0:3]
                            
                                except RuntimeError:
                            
                                    R = np.eye(3)
                            
                                TARGET_MATRIX = M1
                            
                                lensPosition = calibData.getLensPosition(RGB_SOCKET)
                            
                            except:
                            
                                raise
                            
                            
                            
                            fpsCounter = FPSCounter()
                            
                            while True:
                            
                                messageGroup = queue.get()
                            
                                fpsCounter.tick()
                            
                                assert isinstance(messageGroup, dai.MessageGroup)
                            
                                frameRgb = messageGroup["rgb"]
                            
                                assert isinstance(frameRgb, dai.ImgFrame)
                            
                                frameDepth = messageGroup["depth_aligned"]
                            
                                assert isinstance(frameDepth, dai.ImgFrame)
                            
                                sizeRgb = frameRgb.getData().size
                            
                                sizeDepth = frameDepth.getData().size
                            
                                
                            
                                if frameDepth is not None:
                            
                                    rgbFrame = frameRgb.getCvFrame()
                            
                                    alignedDepthColorized = colorizeDepth(frameDepth.getFrame())
                            
                                    cv2.putText(
                            
                                        alignedDepthColorized,
                            
                                        f"FPS: {fpsCounter.getFps():.2f}",
                            
                                        (10, 30),
                            
                                        cv2.FONT_HERSHEY_SIMPLEX,
                            
                                        1,
                            
                                        (255, 255, 255),
                            
                                        2,
                            
                                    )
                            
                                    cv2.imshow("depth", alignedDepthColorized)
                            
                                    key = cv2.waitKey(1)
                            
                                    if key == ord("m"):
                            
                                        remapping = not remapping
                            
                                        print(f"Remap turned {'ON' if remapping else 'OFF'}.")
                            
                                    elif key == ord('s'):
                            
                                        save_ply_flag = True
                            
                                    if remapping:
                            
                                        mapX, mapY = cv2.initUndistortRectifyMap(
                            
                                            M2, D2, None, M2, rgbSize, cv2.CV_32FC1
                            
                                        )
                            
                                        rgbFrame = cv2.remap(rgbFrame, mapX, mapY, cv2.INTER_LINEAR)
                            
                                    blended = cv2.addWeighted(
                            
                                        rgbFrame, rgbWeight, alignedDepthColorized, depthWeight, 0
                            
                                    )
                            
                                    cv2.imshow(rgbDepthWindowName, blended)
                            
                                if save_ply_flag:
                            
                                    rgb_frame = cv2.cvtColor(rgbFrame, cv2.COLOR_BGR2RGB)
                            
                                    save_ply(rgb_frame, frameDepth.getFrame(), 'george_rgb1.ply')
                            
                                    print("PLY file saved as 'george_rgb.ply'")
                            
                                    save_ply_flag = False
                            
                                if key == ord("q"):
                            
                                    break

                            cv2.destroyAllWindows()

                            I ran this script :https://docs.luxonis.com/software/depthai/examples/calibration_reader/
                            Here are the results from it, however if its extrinsic. Then I may have to recalibrate the camera with the method you recommended to me :

                            RGB Camera Default intrinsics...

                            [[494.3519287109375, 0.0, 321.8478088378906], [0.0, 499.4835205078125, 258.3044128417969], [0.0, 0.0, 1.0]]

                            640

                            480

                            RGB Camera Default intrinsics...

                            [[494.3519287109375, 0.0, 321.8478088378906], [0.0, 499.4835205078125, 258.3044128417969], [0.0, 0.0, 1.0]]

                            640

                            480

                            RGB Camera resized intrinsics... 3840 x 2160

                            [[2.96611157e+03 0.00000000e+00 1.93108691e+03]

                            [0.00000000e+00 2.99690112e+03 1.18982642e+03]

                            [0.00000000e+00 0.00000000e+00 1.00000000e+00]]

                            RGB Camera resized intrinsics... 4056 x 3040

                            [[3.13295532e+03 0.00000000e+00 2.03971057e+03]

                            [0.00000000e+00 3.16547681e+03 1.63600427e+03]

                            [0.00000000e+00 0.00000000e+00 1.00000000e+00]]

                            LEFT Camera Default intrinsics...

                            [[842.6837768554688, 0.0, 673.1340942382812], [0.0, 851.867431640625, 412.4818115234375], [0.0, 0.0, 1.0]]

                            1280

                            800

                            LEFT Camera resized intrinsics... 1280 x 720

                            [[842.68377686 0. 673.13409424]

                            [ 0. 851.86743164 372.48181152]

                            [ 0. 0. 1. ]]

                            RIGHT Camera resized intrinsics... 1280 x 720

                            [[836.24615479 0. 656.42828369]

                            [ 0. 845.62658691 399.05911255]

                            [ 0. 0. 1. ]]

                            LEFT Distortion Coefficients...

                            k1: -9.116254806518555

                            k2: 262.5550842285156

                            p1: 0.007134947460144758

                            p2: -0.0009857615223154426

                            k3: 1347.274169921875

                            k4: -9.195904731750488

                            k5: 260.98687744140625

                            k6: 1308.9786376953125

                            s1: 0.0

                            s2: 0.0

                            s3: 0.0

                            s4: 0.0

                            τx: 0.0

                            τy: 0.0

                            RIGHT Distortion Coefficients...

                            k1: -5.861973762512207

                            k2: 5.3061065673828125

                            p1: 0.005871884059160948

                            p2: 0.00142634566873312

                            k3: 88.46317291259766

                            k4: -6.072614669799805

                            k5: 7.037742614746094

                            k6: 83.25321960449219

                            s1: 0.0

                            s2: 0.0

                            s3: 0.0

                            s4: 0.0

                            τx: 0.0

                            τy: 0.0

                            RGB FOV 71.86000061035156, Mono FOV 71.86000061035156

                            LEFT Camera stereo rectification matrix...

                            [[ 9.94211665e-01 8.86633717e-03 -1.81476751e+01]

                            [-4.90145546e-03 9.94452611e-01 2.86947005e+01]

                            [ 2.85166444e-06 4.52051103e-06 9.96386328e-01]]

                            RIGHT Camera stereo rectification matrix...

                            [[ 1.00186534e+00 8.93177200e-03 -6.82440986e+00]

                            [-4.93918803e-03 1.00179181e+00 -7.21055399e-01]

                            [ 2.87361723e-06 4.55387305e-06 9.96286100e-01]]

                            Transformation matrix of where left Camera is W.R.T right Camera's optical center

                            [[ 9.99597728e-01 -7.52320397e-04 -2.83513945e-02 -3.98795390e+00]

                            [ 5.31902653e-04 9.99969602e-01 -7.78123224e-03 -2.61692833e-02]

                            [ 2.83563845e-02 7.76302209e-03 9.99567747e-01 -1.03633568e-01]

                            [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]

                            Transformation matrix of where left Camera is W.R.T RGB Camera's optical center

                            [[ 9.99843597e-01 -8.23507272e-03 1.56521089e-02 -7.51402760e+00]

                            [ 8.25367495e-03 9.99965310e-01 -1.12427305e-03 -1.49354547e-01]

                            [-1.56423096e-02 1.25328498e-03 9.99876857e-01 4.59043831e-01]

                            [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]