walawala111
Basically feed the detection into a manip and send the crop to the pose estimation model.

I'll probably be fixing the example in the upcoming week.

Thanks,
Jaka

    walawala111
    LMK if it works:

    reqs:

    opencv-python==4.5.5.64
    blobconverter==1.4.3
    depthai==2.27
    numpy<2.0.0
    import blobconverter
    import cv2
    import depthai as dai
    from tools import *
    from datetime import timedelta
    
    def frame_norm(frame, bbox):
         h, w = frame.shape[:2]
         return [
              int(bbox[0] * w),
              int(bbox[1] * h),
              int(bbox[2] * w),
              int(bbox[3] * h)
         ]
    
    def create_pipeline():
        pipeline = dai.Pipeline()
    
        print("Creating Color Camera...")
        cam = pipeline.create(dai.node.ColorCamera)
        cam.setPreviewSize(300, 300)
        cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_800_P)
        cam.setInterleaved(False)
        cam.setBoardSocket(dai.CameraBoardSocket.RGB)
        cam.setPreviewKeepAspectRatio(False)
    
        # Passthrough manip
        face_det_manip = pipeline.create(dai.node.ImageManip)
        cam.preview.link(face_det_manip.inputImage)
    
        
        monoLeft = pipeline.create(dai.node.MonoCamera)
        monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
        monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
    
        monoRight = pipeline.create(dai.node.MonoCamera)
        monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
        monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
    
        stereo = pipeline.create(dai.node.StereoDepth)
        stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
        stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
        monoLeft.out.link(stereo.left)
        monoRight.out.link(stereo.right)
    
        # Spatial Detection network
        face_det_nn = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
        face_det_nn.setBoundingBoxScaleFactor(0.8)
        stereo.depth.link(face_det_nn.inputDepth)
        
        face_det_nn.setConfidenceThreshold(0.5)
        face_det_nn.setBlobPath(blobconverter.from_zoo(name="face-detection-retail-0005", shaves=6))
    
        cam.preview.link(face_det_nn.input)
        # face_det_manip.out.link(face_det_nn.input) # Passthrough manip
    
        # Script node will take the output from the face detection NN as an input and set ImageManipConfig
        # to crop the initial frame
        image_manip_script = pipeline.create(dai.node.Script)
        face_det_nn.out.link(image_manip_script.inputs['face_det_in'])
        cam.preview.link(image_manip_script.inputs['preview'])
    
        image_manip_script.setScript("""
        import time
    
        def correct_bb(xmin,ymin,xmax,ymax):
            if xmin < 0: xmin = 0.001
            if ymin < 0: ymin = 0.001
            if xmax > 1: xmax = 0.999
            if ymax > 1: ymax = 0.999
            return [xmin,ymin,xmax,ymax]
    
        while True:
            face_dets = node.io['face_det_in'].tryGet()
            if face_dets is not None:
                img = node.io['preview'].get()
                for i, det in enumerate(face_dets.detections):
                    cfg = ImageManipConfig()
                    bb = correct_bb(det.xmin-0.03, det.ymin-0.03, det.xmax+0.03, det.ymax+0.03)
                    cfg.setCropRect(*bb)
                    cfg.setResize(60, 60)
                    cfg.setKeepAspectRatio(True)
                    node.io['manip_cfg'].send(cfg)
                    node.io['manip_img'].send(img)
            time.sleep(0.001)  # Avoid lazy looping
        """)
    
        # ImageManip for cropping and resizing face detections
        recognition_manip = pipeline.create(dai.node.ImageManip)
        recognition_manip.initialConfig.setResize(60, 60)
        recognition_manip.setWaitForConfigInput(True)
        image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
        image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)
    
        # Second stage recognition NN
        print("Creating recognition Neural Network...")
        recognition_nn = pipeline.create(dai.node.NeuralNetwork)
        recognition_nn.setBlobPath(blobconverter.from_zoo(name="head-pose-estimation-adas-0001", shaves=6))
        recognition_manip.out.link(recognition_nn.input)
    
        
    
        # Synced output 
        sync_xout = pipeline.create(dai.node.XLinkOut)
        sync_xout.setStreamName("sync")
    
    
        # Sync all streams
        sync = pipeline.create(dai.node.Sync)
        cam.video.link(sync.inputs["color"])
        face_det_nn.out.link(sync.inputs["detection"])
        recognition_nn.out.link(sync.inputs["recognition"])
    
        sync.setSyncThreshold(timedelta(milliseconds=40))
        sync.out.link(sync_xout.input)
    
    
        return pipeline
    
    with dai.Device() as device:
        device.startPipeline(create_pipeline())
    
        inSync = device.getOutputQueue("sync", 1, False)
    
        while True:
    
            msgGrp = inSync.get()
            frame = msgGrp["color"].getCvFrame()
            detections = msgGrp["detection"].detections
            recognitions = msgGrp["recognition"]
    
            if frame is not None:
                for i, detection in enumerate(detections):
                    bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
                    print(i, bbox, detection.label, detection.spatialCoordinates.z/1000)
                    roiData = detection.boundingBoxMapping
                    roi = roiData.roi
                    roi = roi.denormalize(frame.shape[1], frame.shape[0])   # Normalize bounding box
                    topLeft = roi.topLeft()
                    bottomRight = roi.bottomRight()
                    xmin = int(topLeft.x)
                    ymin = int(topLeft.y)
                    xmax = int(bottomRight.x)
                    ymax = int(bottomRight.y)
    
                    # Decoding of recognition results
                    rec = recognitions
                    yaw = rec.getLayerFp16('angle_y_fc')[0]
                    pitch = rec.getLayerFp16('angle_p_fc')[0]
                    roll = rec.getLayerFp16('angle_r_fc')[0]
                    decode_pose(yaw, pitch, roll, bbox, frame)
    
                    # Spatial BBOX mapping
                    cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 0), 2)
    
                    # Detection BBOX
                    cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
    
    
                    y = (bbox[1] + bbox[3]) // 2
                    
                    coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z/1000)
                    cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 0, 0), 8)
                    cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255), 2)
    
                cv2.imshow("Camera", frame)
    
            if cv2.waitKey(1) == ord('q'):
                break

    Thanks,
    Jaka

      Hi!jakaskerl

      I tested it and found that when the camera is turned on and there is a face in the image, the measured depth and pose information are accurate. But if there is no face within the visible range of the camera when it is turned on, the code will get stuck. Even if a face appears in the lens after the camera is turned on, the code will still be stuck and will not run normally

      I don't know if it's caused by synchronization. I made the following modifications, but they were not successful。

      import blobconverter
      import cv2
      import depthai as dai
      from tools import *
      from datetime import timedelta

      def frame_norm(frame, bbox):
      h, w = frame.shape[:2]
      return [
      int(bbox[0] * w),
      int(bbox[1] * h),
      int(bbox[2] * w),
      int(bbox[3] * h)
      ]

      def create_pipeline():
      pipeline = dai.Pipeline()

      print("Creating Color Camera...")
      cam = pipeline.create(dai.node.ColorCamera)
      cam.setPreviewSize(300, 300)
      cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
      cam.setInterleaved(False)
      cam.setBoardSocket(dai.CameraBoardSocket.RGB)
      cam.setPreviewKeepAspectRatio(False)
      
      # Passthrough manip
      face_det_manip = pipeline.create(dai.node.ImageManip)
      cam.preview.link(face_det_manip.inputImage)
      
      monoLeft = pipeline.create(dai.node.MonoCamera)
      monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
      monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
      
      monoRight = pipeline.create(dai.node.MonoCamera)
      monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
      monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
      
      stereo = pipeline.create(dai.node.StereoDepth)
      stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
      stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
      monoLeft.out.link(stereo.left)
      monoRight.out.link(stereo.right)
      
      # Spatial Detection network
      face_det_nn = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
      face_det_nn.setBoundingBoxScaleFactor(0.8)
      stereo.depth.link(face_det_nn.inputDepth)
      
      face_det_nn.setConfidenceThreshold(0.5)
      face_det_nn.setBlobPath(blobconverter.from_zoo(name="face-detection-retail-0005", shaves=6))
      
      cam.preview.link(face_det_nn.input)
      # face_det_manip.out.link(face_det_nn.input) # Passthrough manip
      
      # Script node will take the output from the face detection NN as an input and set ImageManipConfig
      # to crop the initial frame
      image_manip_script = pipeline.create(dai.node.Script)
      face_det_nn.out.link(image_manip_script.inputs['face_det_in'])
      cam.preview.link(image_manip_script.inputs['preview'])
      
      image_manip_script.setScript("""
      import time
      
      def correct_bb(xmin,ymin,xmax,ymax):
          if xmin < 0: xmin = 0.001
          if ymin < 0: ymin = 0.001
          if xmax > 1: xmax = 0.999
          if ymax > 1: ymax = 0.999
          return [xmin,ymin,xmax,ymax]
      
      while True:
          face_dets = node.io['face_det_in'].tryGet()
          if face_dets is not None:
              img = node.io['preview'].get()
              for i, det in enumerate(face_dets.detections):
                  cfg = ImageManipConfig()
                  bb = correct_bb(det.xmin-0.03, det.ymin-0.03, det.xmax+0.03, det.ymax+0.03)
                  cfg.setCropRect(*bb)
                  cfg.setResize(60, 60)
                  cfg.setKeepAspectRatio(True)
                  node.io['manip_cfg'].send(cfg)
                  node.io['manip_img'].send(img)
          time.sleep(0.001)  # Avoid lazy looping
      """)
      
      # ImageManip for cropping and resizing face detections
      recognition_manip = pipeline.create(dai.node.ImageManip)
      recognition_manip.initialConfig.setResize(60, 60)
      recognition_manip.setWaitForConfigInput(True)
      image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
      image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)
      
      # Second stage recognition NN
      print("Creating recognition Neural Network...")
      recognition_nn = pipeline.create(dai.node.NeuralNetwork)
      recognition_nn.setBlobPath(blobconverter.from_zoo(name="head-pose-estimation-adas-0001", shaves=6))
      recognition_manip.out.link(recognition_nn.input)
      # Synced output
      sync_xout = pipeline.create(dai.node.XLinkOut)
      sync_xout.setStreamName("sync")
      # Sync all streams
      sync = pipeline.create(dai.node.Sync)
      # cam.video.link(sync.inputs["color"])
      face_det_nn.out.link(sync.inputs["detection"])
      recognition_nn.out.link(sync.inputs["recognition"])
      
      sync.setSyncThreshold(timedelta(milliseconds=40))
      sync.out.link(sync_xout.input)
      
      cam_out = pipeline.create(dai.node.XLinkOut)
      cam_out.setStreamName("color")
      cam.video.link(cam_out.input)
      
      return pipeline

      with dai.Device() as device:
      device.startPipeline(create_pipeline())

      inSync = device.getOutputQueue("sync", 1, False)
      incolor = device.getOutputQueue("color",1,False)
      while True:
          msgGrp = inSync.get()
          frame = incolor.get().getCvFrame()
          detections = msgGrp["detection"].detections
          recognitions = msgGrp["recognition"]
          if frame is not None:
              for i, detection in enumerate(detections):
                  bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
                  print(i, bbox, detection.label, detection.spatialCoordinates.z / 1000)
                  roiData = detection.boundingBoxMapping
                  roi = roiData.roi
                  roi = roi.denormalize(frame.shape[1], frame.shape[0])  # Normalize bounding box
                  topLeft = roi.topLeft()
                  bottomRight = roi.bottomRight()
                  xmin = int(topLeft.x)
                  ymin = int(topLeft.y)
                  xmax = int(bottomRight.x)
                  ymax = int(bottomRight.y)
      
                  # Decoding of recognition results
                  rec = recognitions
                  yaw = rec.getLayerFp16('angle_y_fc')[0]
                  pitch = rec.getLayerFp16('angle_p_fc')[0]
                  roll = rec.getLayerFp16('angle_r_fc')[0]
                  decode_pose(yaw, pitch, roll, bbox, frame)
      
                  # Spatial BBOX mapping
                  cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 0), 2)
      
                  # Detection BBOX
                  cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
      
                  y = (bbox[1] + bbox[3]) // 2
      
                  coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z / 1000)
                  cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 0, 0), 8)
                  cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255), 2)
      
              cv2.imshow("Camera", frame)
      
          if cv2.waitKey(1) == ord('q'):
              break

      Thanks

      Hi jakaskerl
      We conducted a detailed test on the part of head posture recognition and found that the RPY angle recognized was inaccurate and did not change with the change of head posture. The values kept jumping around without any regularity.
      Thanks

        walawala111
        This one should work now.

        from MultiMsgSync import TwoStageHostSeqSync
        import blobconverter
        import cv2
        import depthai as dai
        from tools import *
        
        def create_pipeline(stereo):
            pipeline = dai.Pipeline()
        
            print("Creating Color Camera...")
            cam = pipeline.create(dai.node.ColorCamera)
            cam.setPreviewSize(300, 300)
            cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
            cam.setInterleaved(False)
            cam.setPreviewKeepAspectRatio(False)
            cam.setBoardSocket(dai.CameraBoardSocket.RGB)
        
            cam_xout = pipeline.create(dai.node.XLinkOut)
            cam_xout.setStreamName("color")
            cam.video.link(cam_xout.input)
        
            if stereo:
                monoLeft = pipeline.create(dai.node.MonoCamera)
                monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
                monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
        
                monoRight = pipeline.create(dai.node.MonoCamera)
                monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
                monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
        
                stereo = pipeline.create(dai.node.StereoDepth)
                stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
                stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
                monoLeft.out.link(stereo.left)
                monoRight.out.link(stereo.right)
        
                # Spatial Detection network if OAK-D
                print("OAK-D detected, app will display spatial coordiantes")
                face_det_nn = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
                stereo.depth.link(face_det_nn.inputDepth)
            else: # Detection network if OAK-1
                print("OAK-1 detected, app won't display spatial coordiantes")
                face_det_nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
        
            face_det_nn.setConfidenceThreshold(0.5)
            face_det_nn.setBoundingBoxScaleFactor(0.5)
            face_det_nn.setBlobPath(blobconverter.from_zoo(name="face-detection-retail-0004", shaves=6))
            cam.preview.link(face_det_nn.input)
        
            # Send face detections to the host (for bounding boxes)
            face_det_xout = pipeline.create(dai.node.XLinkOut)
            face_det_xout.setStreamName("detection")
            face_det_nn.out.link(face_det_xout.input)
        
            # Script node will take the output from the face detection NN as an input and set ImageManipConfig
            # to the 'recognition_manip' to crop the initial frame
            image_manip_script = pipeline.create(dai.node.Script)
            face_det_nn.out.link(image_manip_script.inputs['face_det_in'])
        
            # Only send metadata, we are only interested in timestamp, so we can sync
            # depth frames with NN output
            face_det_nn.passthrough.link(image_manip_script.inputs['passthrough'])
            cam.preview.link(image_manip_script.inputs['preview'])
        
            image_manip_script.setScript("""
            import time
            msgs = dict()
        
            def add_msg(msg, name, seq = None):
                global msgs
                if seq is None:
                    seq = msg.getSequenceNum()
                seq = str(seq)
                # node.warn(f"New msg {name}, seq {seq}")
        
                # Each seq number has it's own dict of msgs
                if seq not in msgs:
                    msgs[seq] = dict()
                msgs[seq][name] = msg
        
                # To avoid freezing (not necessary for this ObjDet model)
                if 15 < len(msgs):
                    node.warn(f"Removing first element! len {len(msgs)}")
                    msgs.popitem() # Remove first element
        
            def get_msgs():
                global msgs
                seq_remove = [] # Arr of sequence numbers to get deleted
                for seq, syncMsgs in msgs.items():
                    seq_remove.append(seq) # Will get removed from dict if we find synced msgs pair
                    # node.warn(f"Checking sync {seq}")
        
                    # Check if we have both detections and color frame with this sequence number
                    if len(syncMsgs) == 2: # 1 frame, 1 detection
                        for rm in seq_remove:
                            del msgs[rm]
                        # node.warn(f"synced {seq}. Removed older sync values. len {len(msgs)}")
                        return syncMsgs # Returned synced msgs
                return None
        
            def correct_bb(xmin,ymin,xmax,ymax):
                if xmin < 0: xmin = 0.001
                if ymin < 0: ymin = 0.001
                if xmax > 1: xmax = 0.999
                if ymax > 1: ymax = 0.999
                return [xmin,ymin,xmax,ymax]
        
            while True:
                time.sleep(0.001) # Avoid lazy looping
        
                preview = node.io['preview'].tryGet()
                if preview is not None:
                    add_msg(preview, 'preview')
        
                face_dets = node.io['face_det_in'].tryGet()
                if face_dets is not None:
                    # TODO: in 2.18.0.0 use face_dets.getSequenceNum()
                    passthrough = node.io['passthrough'].get()
                    seq = passthrough.getSequenceNum()
                    add_msg(face_dets, 'dets', seq)
        
                sync_msgs = get_msgs()
                if sync_msgs is not None:
                    img = sync_msgs['preview']
                    dets = sync_msgs['dets']
                    for i, det in enumerate(dets.detections):
                        cfg = ImageManipConfig()
                        bb = correct_bb(det.xmin-0.03, det.ymin-0.03, det.xmax+0.03, det.ymax+0.03)
                        cfg.setCropRect(*bb)
                        # node.warn(f"Sending {i + 1}. det. Seq {seq}. Det {det.xmin}, {det.ymin}, {det.xmax}, {det.ymax}")
                        cfg.setResize(60, 60)
                        cfg.setKeepAspectRatio(False)
                        node.io['manip_cfg'].send(cfg)
                        node.io['manip_img'].send(img)
            """)
            recognition_manip = pipeline.create(dai.node.ImageManip)
            recognition_manip.initialConfig.setResize(60, 60)
            recognition_manip.setWaitForConfigInput(True)
            image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
            image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)
        
            # Second stange recognition NN
            print("Creating recognition Neural Network...")
            recognition_nn = pipeline.create(dai.node.NeuralNetwork)
            recognition_nn.setBlobPath(blobconverter.from_zoo(name="head-pose-estimation-adas-0001", shaves=6))
            recognition_manip.out.link(recognition_nn.input)
        
            recognition_xout = pipeline.create(dai.node.XLinkOut)
            recognition_xout.setStreamName("recognition")
            recognition_nn.out.link(recognition_xout.input)
        
            return pipeline
        
        with dai.Device() as device:
            stereo = 1 < len(device.getConnectedCameras())
            device.startPipeline(create_pipeline(stereo))
            sync = TwoStageHostSeqSync()
            queues = {}
            # Create output queues
            for name in ["color", "detection", "recognition"]:
                queues[name] = device.getOutputQueue(name)
        
            while True:
                for name, q in queues.items():
                    # Add all msgs (color frames, object detections and recognitions) to the Sync class.
                    if q.has():
                        sync.add_msg(q.get(), name)
        
                msgs = sync.get_msgs()
                if msgs is not None:
                    frame = msgs["color"].getCvFrame()
                    detections = msgs["detection"].detections
                    recognitions = msgs["recognition"]
        
                    for i, detection in enumerate(detections):
                        bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
                        roiData = detection.boundingBoxMapping
                        roi = roiData.roi
                        roi = roi.denormalize(frame.shape[1], frame.shape[0])   # Normalize bounding box
                        topLeft = roi.topLeft()
                        bottomRight = roi.bottomRight()
                        xmin = int(topLeft.x)
                        ymin = int(topLeft.y)
                        xmax = int(bottomRight.x)
                        ymax = int(bottomRight.y)
                        # Decoding of recognition results
                        rec = recognitions[i]
                        yaw = rec.getLayerFp16('angle_y_fc')[0]
                        pitch = rec.getLayerFp16('angle_p_fc')[0]
                        roll = rec.getLayerFp16('angle_r_fc')[0]
                        decode_pose(yaw, pitch, roll, bbox, frame)
        
                        cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
                        cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 0), 2)
        
        
                        y = (bbox[1] + bbox[3]) // 2
                        if stereo:
                            # You could also get detection.spatialCoordinates.x and detection.spatialCoordinates.y coordinates
                            coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z/1000)
                            cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 0, 0), 8)
                            cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255), 2)
        
                    cv2.imshow("Camera", frame)
                if cv2.waitKey(1) == ord('q'):
                    break

        Thanks,
        Jaka

          8 days later

          Hi jakaskerl

          I tried rotating the camera 90 degrees for installation and using the code you modified to detect head position and posture information. After entering 'r' on the keyboard, rotate the image by 90 degrees before checking the input model. I used ImageManip to set the angle value to rotate, and another ImageManip to set the size of the image back to (300, 300). However, testing has found that once ImageManip is used, although the image has not been rotated by 90 degrees, the measured ROI area is no longer on the face, but in a distant location. How to modify the ROI area to fit on the face, or is there any other way to rotate the image? Here is my code

          from MultiMsgSync import TwoStageHostSeqSync
          import blobconverter
          import cv2
          import depthai as dai
          from tools import *
          rgbRr = dai.RotatedRect()
          def create_pipeline(stereo):
          pipeline = dai.Pipeline()
          print("Creating Color Camera...")
          cam = pipeline.create(dai.node.ColorCamera)
          cam.setPreviewSize(640, 480)
          cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
          cam.setInterleaved(False)
          cam.setPreviewKeepAspectRatio(False)
          cam.setBoardSocket(dai.CameraBoardSocket.RGB)

          cam_xout = pipeline.create(dai.node.XLinkOut)
          *# cam_xout.setStreamName("color")
          # cam.video.link(cam_xout.input)
          
          *if stereo:
              monoLeft = pipeline.create(dai.node.MonoCamera)
              monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
              monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
          
              monoRight = pipeline.create(dai.node.MonoCamera)
              monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
              monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
          
              stereo = pipeline.create(dai.node.StereoDepth)
              stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
              stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
              monoLeft.out.link(stereo.left)
              monoRight.out.link(stereo.right)
          
              *# Spatial Detection network if OAK-D*
              print("OAK-D detected, app will display spatial coordiantes")
              face_det_nn = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
              stereo.depth.link(face_det_nn.inputDepth)
          else: *# Detection network if OAK-1*
              print("OAK-1 detected, app won't display spatial coordiantes")
              face_det_nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
          
          face_det_nn.setConfidenceThreshold(0.5)
          face_det_nn.setBoundingBoxScaleFactor(0.5)
          face_det_nn.setBlobPath(blobconverter.from_zoo(name="face-detection-retail-0004", shaves=6))
          *# cam.preview.link(face_det_nn.input)
          # ------------------------------------------------------------------------------
          *copy_manip = pipeline.create(dai.node.ImageManip)
          rgbRr.center.x, rgbRr.center.y = cam.getPreviewWidth() // 2, cam.getPreviewHeight() // 2
          rgbRr.size.width, rgbRr.size.height = cam.getPreviewHeight(), cam.getPreviewWidth()
          rgbRr.angle = 0
          copy_manip.initialConfig.setCropRotatedRect(rgbRr, False)
          copy_manip.setNumFramesPool(15)
          copy_manip.setMaxOutputFrameSize(3499200)
          cam.preview.link(copy_manip.inputImage)
          manipRgbCfg = pipeline.create(dai.node.XLinkIn)
          manipRgbCfg.setStreamName("manipCfg")
          manipRgbCfg.out.link(copy_manip.inputConfig)
          face_det_manip = pipeline.create(dai.node.ImageManip)
          face_det_manip.initialConfig.setResize(300,300)
          face_det_manip.initialConfig.setFrameType(dai.RawImgFrame.Type.RGB888p)
          copy_manip.out.link(face_det_manip.inputImage)
          face_det_manip.out.link(face_det_nn.input)
          
          cam_xout.setStreamName("color")
          face_det_manip.out.link(cam_xout.input)
          *# cam.video.link(cam_xout.input)
          # -----------------------------------------------------------------------------------------
          # Send face detections to the host (for bounding boxes)
          *face_det_xout = pipeline.create(dai.node.XLinkOut)
          face_det_xout.setStreamName("detection")
          face_det_nn.out.link(face_det_xout.input)
          
          *# Script node will take the output from the face detection NN as an input and set ImageManipConfig
          # to the 'recognition_manip' to crop the initial frame
          *image_manip_script = pipeline.create(dai.node.Script)
          face_det_nn.out.link(image_manip_script.inputs['face_det_in'])
          
          *# Only send metadata, we are only interested in timestamp, so we can sync
          # depth frames with NN output
          *face_det_nn.passthrough.link(image_manip_script.inputs['passthrough'])
          *# cam.preview.link(image_manip_script.inputs['preview'])*
          face_det_manip.out.link(image_manip_script.inputs['preview'])
          
          image_manip_script.setScript("""
          import time
          msgs = dict()
          
          def add_msg(msg, name, seq = None):
              global msgs
              if seq is None:
                  seq = msg.getSequenceNum()
              seq = str(seq)
              # node.warn(f"New msg {name}, seq {seq}")
          
              # Each seq number has it's own dict of msgs
              if seq not in msgs:
                  msgs[seq] = dict()
              msgs[seq][name] = msg
          
              # To avoid freezing (not necessary for this ObjDet model)
              if 15 < len(msgs):
                  node.warn(f"Removing first element! len {len(msgs)}")
                  msgs.popitem() # Remove first element
          
          def get_msgs():
              global msgs
              seq_remove = [] # Arr of sequence numbers to get deleted
              for seq, syncMsgs in msgs.items():
                  seq_remove.append(seq) # Will get removed from dict if we find synced msgs pair
                  # node.warn(f"Checking sync {seq}")
          
                  # Check if we have both detections and color frame with this sequence number
                  if len(syncMsgs) == 2: # 1 frame, 1 detection
                      for rm in seq_remove:
                          del msgs[rm]
                      # node.warn(f"synced {seq}. Removed older sync values. len {len(msgs)}")
                      return syncMsgs # Returned synced msgs
              return None
          
          def correct_bb(xmin,ymin,xmax,ymax):
              if xmin < 0: xmin = 0.001
              if ymin < 0: ymin = 0.001
              if xmax > 1: xmax = 0.999
              if ymax > 1: ymax = 0.999
              return [xmin,ymin,xmax,ymax]
          
          while True:
              time.sleep(0.001) # Avoid lazy looping
          
              preview = node.io['preview'].tryGet()
              if preview is not None:
                  add_msg(preview, 'preview')
          
              face_dets = node.io['face_det_in'].tryGet()
              if face_dets is not None:
                  # TODO: in 2.18.0.0 use face_dets.getSequenceNum()
                  passthrough = node.io['passthrough'].get()
                  seq = passthrough.getSequenceNum()
                  add_msg(face_dets, 'dets', seq)
          
              sync_msgs = get_msgs()
              if sync_msgs is not None:
                  img = sync_msgs['preview']
                  dets = sync_msgs['dets']
                  for i, det in enumerate(dets.detections):
                      cfg = ImageManipConfig()
                      bb = correct_bb(det.xmin-0.03, det.ymin-0.03, det.xmax+0.03, det.ymax+0.03)
                      cfg.setCropRect(\*bb)
                      # node.warn(f"Sending {i + 1}. det. Seq {seq}. Det {det.xmin}, {det.ymin}, {det.xmax}, {det.ymax}")
                      cfg.setResize(60, 60)
                      cfg.setKeepAspectRatio(False)
                      node.io['manip_cfg'].send(cfg)
                      node.io['manip_img'].send(img)
          """)
          recognition_manip = pipeline.create(dai.node.ImageManip)
          recognition_manip.initialConfig.setResize(60, 60)
          recognition_manip.setWaitForConfigInput(True)
          image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
          image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)
          
          *# Second stange recognition NN*
          print("Creating recognition Neural Network...")
          recognition_nn = pipeline.create(dai.node.NeuralNetwork)
          recognition_nn.setBlobPath(blobconverter.from_zoo(name="head-pose-estimation-adas-0001", shaves=6))
          recognition_manip.out.link(recognition_nn.input)
          
          recognition_xout = pipeline.create(dai.node.XLinkOut)
          recognition_xout.setStreamName("recognition")
          recognition_nn.out.link(recognition_xout.input)
          
          return pipeline

          with dai.Device() as device:
          stereo = 1 < len(device.getConnectedCameras())
          device.startPipeline(create_pipeline(stereo))
          sync = TwoStageHostSeqSync()
          queues = {}
          qManipCfg = device.getInputQueue(name="manipCfg")
          # Create output queues
          for name in ["color", "detection", "recognition"]:
          queues[name] = device.getOutputQueue(name)

          while True:
              for name, q in queues.items():
                  *# Add all msgs (color frames, object detections and recognitions) to the Sync class.*
                  if q.has():
                      sync.add_msg(q.get(), name)
          
              msgs = sync.get_msgs()
              if msgs is not None:
                  frame = msgs["color"].getCvFrame()
                  detections = msgs["detection"].detections
                  recognitions = msgs["recognition"]
          
                  for i, detection in enumerate(detections):
                      bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
                      roiData = detection.boundingBoxMapping
                      roi = roiData.roi
                      roi = roi.denormalize(frame.shape[1], frame.shape[0])   *# Normalize bounding box*
                      topLeft = roi.topLeft()
                      bottomRight = roi.bottomRight()
                      xmin = int(topLeft.x)
                      ymin = int(topLeft.y)
                      xmax = int(bottomRight.x)
                      ymax = int(bottomRight.y)
                      *# Decoding of recognition results*
                      rec = recognitions[i]
                      yaw = rec.getLayerFp16('angle_y_fc')[0]
                      pitch = rec.getLayerFp16('angle_p_fc')[0]
                      roll = rec.getLayerFp16('angle_r_fc')[0]
                      decode_pose(yaw, pitch, roll, bbox, frame)
          
                      cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
                      cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 0), 2)
          
          
                      y = (bbox[1] + bbox[3]) // 2
                      if stereo:
                          *# You could also get detection.spatialCoordinates.x and detection.spatialCoordinates.y coordinates*
                          coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z/1000)
                          cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 0, 0), 8)
                          cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255), 2)
          
                  cv2.imshow("Camera", frame)
              key = cv2.waitKey(1)
              if key == ord('q'):
                  break
              elif key ==ord('r'):
                  new_angle = 90
                  cfg = dai.ImageManipConfig()
                  rgbRr.angle = new_angle
                  cfg.setCropRotatedRect(rgbRr, False)
                  qManipCfg.send(cfg)
                  print(f"Image rotated to {rgbRr.angle} degrees")

          @walawala111 I'd suggest rotating the frame before inferencing, so then you don't need to do mapping from non-rotated to rotated frame (bounding box / location of face on the image).

            Hi, erik
            I rotated the RGB image and depth information separately, and the code is as follows:
            cam = pipeline.create(dai.node.ColorCamera)
            cam.setPreviewSize(640, 400)
            cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
            cam.setInterleaved(False)
            cam.setPreviewKeepAspectRatio(False)
            cam.setBoardSocket(dai.CameraBoardSocket.RGB)
            copy_manip = pipeline.create(dai.node.ImageManip)
            rgbRr.center.x,rgbRr.center.y = cam.getPreviewWidth() // 2,cam.getPreviewHeight() //2
            rgbRr.size.width, rgbRr.size.height = cam.getPreviewHeight(), cam.getPreviewWidth()
            rgbRr.angle = 90
            copy_manip.initialConfig.setCropRotatedRect(rgbRr, False)
            copy_manip.setNumFramesPool(15)
            copy_manip.setMaxOutputFrameSize(3499200)
            cam.preview.link(copy_manip.inputImage)
            face_det_manip = pipeline.create(dai.node.ImageManip)
            face_det_manip.initialConfig.setResize(300,300)
            face_det_manip.initialConfig.setFrameType(dai.RawImgFrame.Type.RGB888p)
            copy_manip.out.link(face_det_manip.inputImage)
            face_det_manip.out.link(face_det_nn.input)
            cam_xout = pipeline.create(dai.node.XLinkOut)
            cam_xout.setStreamName("color")
            face_det_manip.out.link(cam_xout.input)

            manip_depth = pipeline.create(dai.node.ImageManip)
            rotated_rect = dai.RotatedRect()
            rotated_rect.center.x, rotated_rect.center.y = monoRight.getResolutionWidth() // 2, monoRight.getResolutionHeight() // 2
            rotated_rect.size.width, rotated_rect.size.height = monoRight.getResolutionHeight(), monoRight.getResolutionWidth()
            rotated_rect.angle = 90
            manip_depth.initialConfig.setCropRotatedRect(rotated_rect, False)
            stereo.depth.link(manip_depth.inputImage)
            manip_depth.out.link(face_det_nn.inputDepth)

            It seems that the rotation was successful.
            ![
            ]
            But the detected depth values fluctuate greatly, such as jumping continuously between 600 and 1200mm. What is the reason?
            It seems that it's not just a matter of significant data fluctuations, but also the inaccurate depth data measured.

            Thanks

            • erik replied to this.

              Hi erik
              After installing the camera by rotating it clockwise by 90 degrees, I rotated both the image and depth by 90 degrees, and marked the ROI area with boxes on both the depth map and RGB image. The ROI area does appear on the face in the RGB image, but it deviates a lot from the face in the depth map. I am not sure if it is a problem with the size of the depth map
              The following is my code, which uses tools.ty and MultiMonsSync.by from the gen2 head post detection/pai folder.
              ![
              ](https://)
              ![
              ](https://)

              from MultiMsgSync import TwoStageHostSeqSync
              import blobconverter
              import cv2
              import depthai as dai
              from tools import *
              rgbRr = dai.RotatedRect()
              def create_pipeline(stereo):
                  pipeline = dai.Pipeline()
                  print("Creating Color Camera...")
                  cam = pipeline.create(dai.node.ColorCamera)
                  cam.setPreviewSize(640,400)
                  cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
                  cam.setInterleaved(False)
                  cam.setPreviewKeepAspectRatio(False)
                  cam.setBoardSocket(dai.CameraBoardSocket.RGB)
                  if stereo:
                      monoLeft = pipeline.create(dai.node.MonoCamera)
                      monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
                      monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
                      monoRight = pipeline.create(dai.node.MonoCamera)
                      monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
                      monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
                      stereo = pipeline.create(dai.node.StereoDepth)
                      stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
                      stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
                      monoLeft.out.link(stereo.left)
                      monoRight.out.link(stereo.right)
                      print("OAK-D detected, app will display spatial coordiantes")
                      face_det_nn = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
                      manip_depth = pipeline.create(dai.node.ImageManip)
                      rotated_rect = dai.RotatedRect()
                      rotated_rect.center.x, rotated_rect.center.y = monoRight.getResolutionWidth() // 2, monoRight.getResolutionHeight() // 2
                      rotated_rect.size.width, rotated_rect.size.height = monoRight.getResolutionHeight(), monoRight.getResolutionWidth()
                      rotated_rect.angle = 90
                      manip_depth.initialConfig.setCropRotatedRect(rotated_rect, False)
                      stereo.depth.link(manip_depth.inputImage)
                      manip_depth.out.link(face_det_nn.inputDepth)
                  else:
                      print("OAK-1 detected, app won't display spatial coordiantes")
                      face_det_nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
                  face_det_nn.setConfidenceThreshold(0.5)
                  face_det_nn.setBoundingBoxScaleFactor(0.5)
                  face_det_nn.setBlobPath(blobconverter.from_zoo(name="face-detection-retail-0004", shaves=6))
                  copy_manip = pipeline.create(dai.node.ImageManip)
                  rgbRr.center.x, rgbRr.center.y = cam.getPreviewWidth() // 2, cam.getPreviewHeight() // 2
                  rgbRr.size.width, rgbRr.size.height = cam.getPreviewHeight(), cam.getPreviewWidth()
                  rgbRr.angle = 90
                  copy_manip.initialConfig.setCropRotatedRect(rgbRr, False)
                  copy_manip.setNumFramesPool(15)
                  copy_manip.setMaxOutputFrameSize(3499200)
                  cam.preview.link(copy_manip.inputImage)
                  face_det_manip = pipeline.create(dai.node.ImageManip)
                  face_det_manip.initialConfig.setResize(300, 300)
                  face_det_manip.initialConfig.setFrameType(dai.RawImgFrame.Type.RGB888p)
                  copy_manip.out.link(face_det_manip.inputImage)
                  face_det_manip.out.link(face_det_nn.input)
                  cam_xout = pipeline.create(dai.node.XLinkOut)
                  cam_xout.setStreamName("color")
                  face_det_manip.out.link(cam_xout.input)
                  face_det_xout = pipeline.create(dai.node.XLinkOut)
                  face_det_xout.setStreamName("detection")
                  face_det_nn.out.link(face_det_xout.input)
                  image_manip_script = pipeline.create(dai.node.Script)
                  face_det_nn.out.link(image_manip_script.inputs['face_det_in'])
                  face_det_nn.passthrough.link(image_manip_script.inputs['passthrough'])
                  cam.preview.link(image_manip_script.inputs['preview'])
                  image_manip_script.setScript("""
                  import time
                  msgs = dict()
                  def add_msg(msg, name, seq = None):
                      global msgs
                      if seq is None:
                          seq = msg.getSequenceNum()
                      seq = str(seq)
                      if seq not in msgs:
                          msgs[seq] = dict()
                      msgs[seq][name] = msg
                      if 15 < len(msgs):
                          node.warn(f"Removing first element! len {len(msgs)}")
                          msgs.popitem() # Remove first element
                  def get_msgs():
                      global msgs
                      seq_remove = [] # Arr of sequence numbers to get deleted
                      for seq, syncMsgs in msgs.items():
                          seq_remove.append(seq) # Will get removed from dict if we find synced msgs pair
                          if len(syncMsgs) == 2: # 1 frame, 1 detection
                              for rm in seq_remove:
                                  del msgs[rm]
                              return syncMsgs # Returned synced msgs
                      return None
                  def correct_bb(xmin,ymin,xmax,ymax):
                      if xmin < 0: xmin = 0.001
                      if ymin < 0: ymin = 0.001
                      if xmax > 1: xmax = 0.999
                      if ymax > 1: ymax = 0.999
                      return [xmin,ymin,xmax,ymax]
                  while True:
                      time.sleep(0.001) # Avoid lazy looping
                      preview = node.io['preview'].tryGet()
                      if preview is not None:
                          add_msg(preview, 'preview')
                      face_dets = node.io['face_det_in'].tryGet()
                      if face_dets is not None:
                          passthrough = node.io['passthrough'].get()
                          seq = passthrough.getSequenceNum()
                          add_msg(face_dets, 'dets', seq)
                      sync_msgs = get_msgs()
                      if sync_msgs is not None:
                          img = sync_msgs['preview']
                          dets = sync_msgs['dets']
                          for i, det in enumerate(dets.detections):
                              cfg = ImageManipConfig()
                              bb = correct_bb(det.xmin-0.03, det.ymin-0.03, det.xmax+0.03, det.ymax+0.03)
                              cfg.setCropRect(*bb)
                              cfg.setResize(60, 60)
                              cfg.setKeepAspectRatio(False)
                              node.io['manip_cfg'].send(cfg)
                              node.io['manip_img'].send(img)
                  """)
                  recognition_manip = pipeline.create(dai.node.ImageManip)
                  recognition_manip.initialConfig.setResize(60, 60)
                  recognition_manip.setWaitForConfigInput(True)
                  image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
                  image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)
                  print("Creating recognition Neural Network...")
                  recognition_nn = pipeline.create(dai.node.NeuralNetwork)
                  recognition_nn.setBlobPath(blobconverter.from_zoo(name="head-pose-estimation-adas-0001", shaves=6))
                  recognition_manip.out.link(recognition_nn.input)
                  recognition_xout = pipeline.create(dai.node.XLinkOut)
                  recognition_xout.setStreamName("recognition")
                  xoutDepth = pipeline.create(dai.node.XLinkOut)
                  xoutDepth.setStreamName("depth")
                  face_det_nn.passthroughDepth.link(xoutDepth.input)
                  recognition_nn.out.link(recognition_xout.input)
                  return pipeline
              with dai.Device() as device:
                  stereo = 1 < len(device.getConnectedCameras())
                  device.startPipeline(create_pipeline(stereo))
                  sync = TwoStageHostSeqSync()
                  queues = {}
                  for name in ["color", "detection", "recognition", "depth"]:
                      queues[name] = device.getOutputQueue(name)
                  depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False)
                  while True:
                      depth = depthQueue.get()
                      for name, q in queues.items():
                          if q.has():
                              sync.add_msg(q.get(), name)
                      msgs = sync.get_msgs()
                      depthFrame = depth.getFrame()  # depthFrame values are in millimeters
                      depth_downscaled = depthFrame[::4]
                      if np.all(depth_downscaled == 0):
                          min_depth = 0  # Set a default minimum depth value when all elements are zero
                      else:
                          min_depth = np.percentile(depth_downscaled[depth_downscaled != 0], 1)
                      max_depth = np.percentile(depth_downscaled, 99)
                      depthFrameColor = np.interp(depthFrame, (min_depth, max_depth), (0, 255)).astype(np.uint8)
                      depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_TURBO)
                      if msgs is not None:
                          frame = msgs["color"].getCvFrame()
                          detections = msgs["detection"].detections
                          recognitions = msgs["recognition"]
                          for i, detection in enumerate(detections):
                              bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
                              roiData = detection.boundingBoxMapping
                              roi = roiData.roi
                              depthroi = roi.denormalize(depthFrameColor.shape[1], depthFrameColor.shape[0])
                              depthtopLeft = depthroi.topLeft()
                              depthbottomRight = depthroi.bottomRight()
                              depthxmin = int(depthtopLeft.x)
                              depthymin = int(depthtopLeft.y)
                              depthxmax = int(depthbottomRight.x)
                              depthymax = int(depthbottomRight.y)
                              cv2.rectangle(depthFrameColor, (depthxmin, depthymin), (depthxmax, depthymax),  (255, 255, 255), 1)
                              roi = roi.denormalize(frame.shape[1], frame.shape[0])   # Normalize bounding box
                              topLeft = roi.topLeft()
                              bottomRight = roi.bottomRight()
                              xmin = int(topLeft.x)
                              ymin = int(topLeft.y)
                              xmax = int(bottomRight.x)
                              ymax = int(bottomRight.y)
                              rec = recognitions[i]
                              yaw = rec.getLayerFp16('angle_y_fc')[0]
                              pitch = rec.getLayerFp16('angle_p_fc')[0]
                              roll = rec.getLayerFp16('angle_r_fc')[0]
                              decode_pose(yaw, pitch, roll, bbox, frame)
                              cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
                              cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 0), 2)
                              y = (bbox[1] + bbox[3]) // 2
                              if stereo:
                                  coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z/1000)
                                  cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 0, 0), 8)
                                  cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255), 2)
                          cv2.imshow("Camera", frame)
                          cv2.imshow("depth", depthFrameColor)
                      if cv2.waitKey(1) == ord('q'):
                          break`

              erik
              Yes. After rotating the RGB image and depth map by 90deg, I wanted to recognize the depth data of the face, but after visualizing the depth map and box, I found that the box was not on the face, but in a lower position. And the depth map doesn't seem to match the RGB map, with a smaller viewing angle.
              Thanks

              Hi erik
              I may not have explained the problem I encountered clearly. My goal is to rotate the camera clockwise by 90 degrees and install it to detect the position data (xyz) of the face and the posture angle data (RPY) of the head.
              For RGB images and depth maps, I rotated them separately using ImageManip. However, after visualizing bbox, it was found that the ROI area was not on the face.
              here is the mre
              Thanks in advance!

              Hi @walawala111
              I think this might be an issue of imageManip not passing the rotation information to the spatialLocationCalculator.

              Would have to check that with the team.

              Thanks,
              Jaka

                6 days later

                @walawala111 200 lines of code is not an MRE. Please distil it down to minimal repro example and we can take a look into it.