Hi, erik
I rotated the RGB image and depth information separately, and the code is as follows:
cam = pipeline.create(dai.node.ColorCamera)
cam.setPreviewSize(640, 400)
cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
cam.setInterleaved(False)
cam.setPreviewKeepAspectRatio(False)
cam.setBoardSocket(dai.CameraBoardSocket.RGB)
copy_manip = pipeline.create(dai.node.ImageManip)
rgbRr.center.x,rgbRr.center.y = cam.getPreviewWidth() // 2,cam.getPreviewHeight() //2
rgbRr.size.width, rgbRr.size.height = cam.getPreviewHeight(), cam.getPreviewWidth()
rgbRr.angle = 90
copy_manip.initialConfig.setCropRotatedRect(rgbRr, False)
copy_manip.setNumFramesPool(15)
copy_manip.setMaxOutputFrameSize(3499200)
cam.preview.link(copy_manip.inputImage)
face_det_manip = pipeline.create(dai.node.ImageManip)
face_det_manip.initialConfig.setResize(300,300)
face_det_manip.initialConfig.setFrameType(dai.RawImgFrame.Type.RGB888p)
copy_manip.out.link(face_det_manip.inputImage)
face_det_manip.out.link(face_det_nn.input)
cam_xout = pipeline.create(dai.node.XLinkOut)
cam_xout.setStreamName("color")
face_det_manip.out.link(cam_xout.input)

manip_depth = pipeline.create(dai.node.ImageManip)
rotated_rect = dai.RotatedRect()
rotated_rect.center.x, rotated_rect.center.y = monoRight.getResolutionWidth() // 2, monoRight.getResolutionHeight() // 2
rotated_rect.size.width, rotated_rect.size.height = monoRight.getResolutionHeight(), monoRight.getResolutionWidth()
rotated_rect.angle = 90
manip_depth.initialConfig.setCropRotatedRect(rotated_rect, False)
stereo.depth.link(manip_depth.inputImage)
manip_depth.out.link(face_det_nn.inputDepth)

It seems that the rotation was successful.
![
]
But the detected depth values fluctuate greatly, such as jumping continuously between 600 and 1200mm. What is the reason?
It seems that it's not just a matter of significant data fluctuations, but also the inaccurate depth data measured.

Thanks

  • erik replied to this.

    Hi erik
    After installing the camera by rotating it clockwise by 90 degrees, I rotated both the image and depth by 90 degrees, and marked the ROI area with boxes on both the depth map and RGB image. The ROI area does appear on the face in the RGB image, but it deviates a lot from the face in the depth map. I am not sure if it is a problem with the size of the depth map
    The following is my code, which uses tools.ty and MultiMonsSync.by from the gen2 head post detection/pai folder.
    ![
    ](https://)
    ![
    ](https://)

    from MultiMsgSync import TwoStageHostSeqSync
    import blobconverter
    import cv2
    import depthai as dai
    from tools import *
    rgbRr = dai.RotatedRect()
    def create_pipeline(stereo):
        pipeline = dai.Pipeline()
        print("Creating Color Camera...")
        cam = pipeline.create(dai.node.ColorCamera)
        cam.setPreviewSize(640,400)
        cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
        cam.setInterleaved(False)
        cam.setPreviewKeepAspectRatio(False)
        cam.setBoardSocket(dai.CameraBoardSocket.RGB)
        if stereo:
            monoLeft = pipeline.create(dai.node.MonoCamera)
            monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
            monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
            monoRight = pipeline.create(dai.node.MonoCamera)
            monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
            monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
            stereo = pipeline.create(dai.node.StereoDepth)
            stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
            stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
            monoLeft.out.link(stereo.left)
            monoRight.out.link(stereo.right)
            print("OAK-D detected, app will display spatial coordiantes")
            face_det_nn = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
            manip_depth = pipeline.create(dai.node.ImageManip)
            rotated_rect = dai.RotatedRect()
            rotated_rect.center.x, rotated_rect.center.y = monoRight.getResolutionWidth() // 2, monoRight.getResolutionHeight() // 2
            rotated_rect.size.width, rotated_rect.size.height = monoRight.getResolutionHeight(), monoRight.getResolutionWidth()
            rotated_rect.angle = 90
            manip_depth.initialConfig.setCropRotatedRect(rotated_rect, False)
            stereo.depth.link(manip_depth.inputImage)
            manip_depth.out.link(face_det_nn.inputDepth)
        else:
            print("OAK-1 detected, app won't display spatial coordiantes")
            face_det_nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
        face_det_nn.setConfidenceThreshold(0.5)
        face_det_nn.setBoundingBoxScaleFactor(0.5)
        face_det_nn.setBlobPath(blobconverter.from_zoo(name="face-detection-retail-0004", shaves=6))
        copy_manip = pipeline.create(dai.node.ImageManip)
        rgbRr.center.x, rgbRr.center.y = cam.getPreviewWidth() // 2, cam.getPreviewHeight() // 2
        rgbRr.size.width, rgbRr.size.height = cam.getPreviewHeight(), cam.getPreviewWidth()
        rgbRr.angle = 90
        copy_manip.initialConfig.setCropRotatedRect(rgbRr, False)
        copy_manip.setNumFramesPool(15)
        copy_manip.setMaxOutputFrameSize(3499200)
        cam.preview.link(copy_manip.inputImage)
        face_det_manip = pipeline.create(dai.node.ImageManip)
        face_det_manip.initialConfig.setResize(300, 300)
        face_det_manip.initialConfig.setFrameType(dai.RawImgFrame.Type.RGB888p)
        copy_manip.out.link(face_det_manip.inputImage)
        face_det_manip.out.link(face_det_nn.input)
        cam_xout = pipeline.create(dai.node.XLinkOut)
        cam_xout.setStreamName("color")
        face_det_manip.out.link(cam_xout.input)
        face_det_xout = pipeline.create(dai.node.XLinkOut)
        face_det_xout.setStreamName("detection")
        face_det_nn.out.link(face_det_xout.input)
        image_manip_script = pipeline.create(dai.node.Script)
        face_det_nn.out.link(image_manip_script.inputs['face_det_in'])
        face_det_nn.passthrough.link(image_manip_script.inputs['passthrough'])
        cam.preview.link(image_manip_script.inputs['preview'])
        image_manip_script.setScript("""
        import time
        msgs = dict()
        def add_msg(msg, name, seq = None):
            global msgs
            if seq is None:
                seq = msg.getSequenceNum()
            seq = str(seq)
            if seq not in msgs:
                msgs[seq] = dict()
            msgs[seq][name] = msg
            if 15 < len(msgs):
                node.warn(f"Removing first element! len {len(msgs)}")
                msgs.popitem() # Remove first element
        def get_msgs():
            global msgs
            seq_remove = [] # Arr of sequence numbers to get deleted
            for seq, syncMsgs in msgs.items():
                seq_remove.append(seq) # Will get removed from dict if we find synced msgs pair
                if len(syncMsgs) == 2: # 1 frame, 1 detection
                    for rm in seq_remove:
                        del msgs[rm]
                    return syncMsgs # Returned synced msgs
            return None
        def correct_bb(xmin,ymin,xmax,ymax):
            if xmin < 0: xmin = 0.001
            if ymin < 0: ymin = 0.001
            if xmax > 1: xmax = 0.999
            if ymax > 1: ymax = 0.999
            return [xmin,ymin,xmax,ymax]
        while True:
            time.sleep(0.001) # Avoid lazy looping
            preview = node.io['preview'].tryGet()
            if preview is not None:
                add_msg(preview, 'preview')
            face_dets = node.io['face_det_in'].tryGet()
            if face_dets is not None:
                passthrough = node.io['passthrough'].get()
                seq = passthrough.getSequenceNum()
                add_msg(face_dets, 'dets', seq)
            sync_msgs = get_msgs()
            if sync_msgs is not None:
                img = sync_msgs['preview']
                dets = sync_msgs['dets']
                for i, det in enumerate(dets.detections):
                    cfg = ImageManipConfig()
                    bb = correct_bb(det.xmin-0.03, det.ymin-0.03, det.xmax+0.03, det.ymax+0.03)
                    cfg.setCropRect(*bb)
                    cfg.setResize(60, 60)
                    cfg.setKeepAspectRatio(False)
                    node.io['manip_cfg'].send(cfg)
                    node.io['manip_img'].send(img)
        """)
        recognition_manip = pipeline.create(dai.node.ImageManip)
        recognition_manip.initialConfig.setResize(60, 60)
        recognition_manip.setWaitForConfigInput(True)
        image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
        image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)
        print("Creating recognition Neural Network...")
        recognition_nn = pipeline.create(dai.node.NeuralNetwork)
        recognition_nn.setBlobPath(blobconverter.from_zoo(name="head-pose-estimation-adas-0001", shaves=6))
        recognition_manip.out.link(recognition_nn.input)
        recognition_xout = pipeline.create(dai.node.XLinkOut)
        recognition_xout.setStreamName("recognition")
        xoutDepth = pipeline.create(dai.node.XLinkOut)
        xoutDepth.setStreamName("depth")
        face_det_nn.passthroughDepth.link(xoutDepth.input)
        recognition_nn.out.link(recognition_xout.input)
        return pipeline
    with dai.Device() as device:
        stereo = 1 < len(device.getConnectedCameras())
        device.startPipeline(create_pipeline(stereo))
        sync = TwoStageHostSeqSync()
        queues = {}
        for name in ["color", "detection", "recognition", "depth"]:
            queues[name] = device.getOutputQueue(name)
        depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False)
        while True:
            depth = depthQueue.get()
            for name, q in queues.items():
                if q.has():
                    sync.add_msg(q.get(), name)
            msgs = sync.get_msgs()
            depthFrame = depth.getFrame()  # depthFrame values are in millimeters
            depth_downscaled = depthFrame[::4]
            if np.all(depth_downscaled == 0):
                min_depth = 0  # Set a default minimum depth value when all elements are zero
            else:
                min_depth = np.percentile(depth_downscaled[depth_downscaled != 0], 1)
            max_depth = np.percentile(depth_downscaled, 99)
            depthFrameColor = np.interp(depthFrame, (min_depth, max_depth), (0, 255)).astype(np.uint8)
            depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_TURBO)
            if msgs is not None:
                frame = msgs["color"].getCvFrame()
                detections = msgs["detection"].detections
                recognitions = msgs["recognition"]
                for i, detection in enumerate(detections):
                    bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
                    roiData = detection.boundingBoxMapping
                    roi = roiData.roi
                    depthroi = roi.denormalize(depthFrameColor.shape[1], depthFrameColor.shape[0])
                    depthtopLeft = depthroi.topLeft()
                    depthbottomRight = depthroi.bottomRight()
                    depthxmin = int(depthtopLeft.x)
                    depthymin = int(depthtopLeft.y)
                    depthxmax = int(depthbottomRight.x)
                    depthymax = int(depthbottomRight.y)
                    cv2.rectangle(depthFrameColor, (depthxmin, depthymin), (depthxmax, depthymax),  (255, 255, 255), 1)
                    roi = roi.denormalize(frame.shape[1], frame.shape[0])   # Normalize bounding box
                    topLeft = roi.topLeft()
                    bottomRight = roi.bottomRight()
                    xmin = int(topLeft.x)
                    ymin = int(topLeft.y)
                    xmax = int(bottomRight.x)
                    ymax = int(bottomRight.y)
                    rec = recognitions[i]
                    yaw = rec.getLayerFp16('angle_y_fc')[0]
                    pitch = rec.getLayerFp16('angle_p_fc')[0]
                    roll = rec.getLayerFp16('angle_r_fc')[0]
                    decode_pose(yaw, pitch, roll, bbox, frame)
                    cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
                    cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 0), 2)
                    y = (bbox[1] + bbox[3]) // 2
                    if stereo:
                        coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z/1000)
                        cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 0, 0), 8)
                        cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255), 2)
                cv2.imshow("Camera", frame)
                cv2.imshow("depth", depthFrameColor)
            if cv2.waitKey(1) == ord('q'):
                break`

    erik
    Yes. After rotating the RGB image and depth map by 90deg, I wanted to recognize the depth data of the face, but after visualizing the depth map and box, I found that the box was not on the face, but in a lower position. And the depth map doesn't seem to match the RGB map, with a smaller viewing angle.
    Thanks

    Hi erik
    I may not have explained the problem I encountered clearly. My goal is to rotate the camera clockwise by 90 degrees and install it to detect the position data (xyz) of the face and the posture angle data (RPY) of the head.
    For RGB images and depth maps, I rotated them separately using ImageManip. However, after visualizing bbox, it was found that the ROI area was not on the face.
    here is the mre
    Thanks in advance!

    Hi @walawala111
    I think this might be an issue of imageManip not passing the rotation information to the spatialLocationCalculator.

    Would have to check that with the team.

    Thanks,
    Jaka

      6 days later

      @walawala111 200 lines of code is not an MRE. Please distil it down to minimal repro example and we can take a look into it.

        Hi walawala111
        It's manip issue. In order to properly set the spatial bounding box of a rotated (transformed) image, you would need the order of operations that were applied to the start image, the undistortion mesh; as well as intrinsics of both stereo as well as color cameras. Current implementation of ImageManip node apparently does not allow this information passthrough.
        DepthaiV3 aims to fix this issue.

        Thanks,
        Jaka