walawala111
This one should work now.

from MultiMsgSync import TwoStageHostSeqSync
import blobconverter
import cv2
import depthai as dai
from tools import *

def create_pipeline(stereo):
    pipeline = dai.Pipeline()

    print("Creating Color Camera...")
    cam = pipeline.create(dai.node.ColorCamera)
    cam.setPreviewSize(300, 300)
    cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
    cam.setInterleaved(False)
    cam.setPreviewKeepAspectRatio(False)
    cam.setBoardSocket(dai.CameraBoardSocket.RGB)

    cam_xout = pipeline.create(dai.node.XLinkOut)
    cam_xout.setStreamName("color")
    cam.video.link(cam_xout.input)

    if stereo:
        monoLeft = pipeline.create(dai.node.MonoCamera)
        monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
        monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)

        monoRight = pipeline.create(dai.node.MonoCamera)
        monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
        monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)

        stereo = pipeline.create(dai.node.StereoDepth)
        stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
        stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
        monoLeft.out.link(stereo.left)
        monoRight.out.link(stereo.right)

        # Spatial Detection network if OAK-D
        print("OAK-D detected, app will display spatial coordiantes")
        face_det_nn = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
        stereo.depth.link(face_det_nn.inputDepth)
    else: # Detection network if OAK-1
        print("OAK-1 detected, app won't display spatial coordiantes")
        face_det_nn = pipeline.create(dai.node.MobileNetDetectionNetwork)

    face_det_nn.setConfidenceThreshold(0.5)
    face_det_nn.setBoundingBoxScaleFactor(0.5)
    face_det_nn.setBlobPath(blobconverter.from_zoo(name="face-detection-retail-0004", shaves=6))
    cam.preview.link(face_det_nn.input)

    # Send face detections to the host (for bounding boxes)
    face_det_xout = pipeline.create(dai.node.XLinkOut)
    face_det_xout.setStreamName("detection")
    face_det_nn.out.link(face_det_xout.input)

    # Script node will take the output from the face detection NN as an input and set ImageManipConfig
    # to the 'recognition_manip' to crop the initial frame
    image_manip_script = pipeline.create(dai.node.Script)
    face_det_nn.out.link(image_manip_script.inputs['face_det_in'])

    # Only send metadata, we are only interested in timestamp, so we can sync
    # depth frames with NN output
    face_det_nn.passthrough.link(image_manip_script.inputs['passthrough'])
    cam.preview.link(image_manip_script.inputs['preview'])

    image_manip_script.setScript("""
    import time
    msgs = dict()

    def add_msg(msg, name, seq = None):
        global msgs
        if seq is None:
            seq = msg.getSequenceNum()
        seq = str(seq)
        # node.warn(f"New msg {name}, seq {seq}")

        # Each seq number has it's own dict of msgs
        if seq not in msgs:
            msgs[seq] = dict()
        msgs[seq][name] = msg

        # To avoid freezing (not necessary for this ObjDet model)
        if 15 < len(msgs):
            node.warn(f"Removing first element! len {len(msgs)}")
            msgs.popitem() # Remove first element

    def get_msgs():
        global msgs
        seq_remove = [] # Arr of sequence numbers to get deleted
        for seq, syncMsgs in msgs.items():
            seq_remove.append(seq) # Will get removed from dict if we find synced msgs pair
            # node.warn(f"Checking sync {seq}")

            # Check if we have both detections and color frame with this sequence number
            if len(syncMsgs) == 2: # 1 frame, 1 detection
                for rm in seq_remove:
                    del msgs[rm]
                # node.warn(f"synced {seq}. Removed older sync values. len {len(msgs)}")
                return syncMsgs # Returned synced msgs
        return None

    def correct_bb(xmin,ymin,xmax,ymax):
        if xmin < 0: xmin = 0.001
        if ymin < 0: ymin = 0.001
        if xmax > 1: xmax = 0.999
        if ymax > 1: ymax = 0.999
        return [xmin,ymin,xmax,ymax]

    while True:
        time.sleep(0.001) # Avoid lazy looping

        preview = node.io['preview'].tryGet()
        if preview is not None:
            add_msg(preview, 'preview')

        face_dets = node.io['face_det_in'].tryGet()
        if face_dets is not None:
            # TODO: in 2.18.0.0 use face_dets.getSequenceNum()
            passthrough = node.io['passthrough'].get()
            seq = passthrough.getSequenceNum()
            add_msg(face_dets, 'dets', seq)

        sync_msgs = get_msgs()
        if sync_msgs is not None:
            img = sync_msgs['preview']
            dets = sync_msgs['dets']
            for i, det in enumerate(dets.detections):
                cfg = ImageManipConfig()
                bb = correct_bb(det.xmin-0.03, det.ymin-0.03, det.xmax+0.03, det.ymax+0.03)
                cfg.setCropRect(*bb)
                # node.warn(f"Sending {i + 1}. det. Seq {seq}. Det {det.xmin}, {det.ymin}, {det.xmax}, {det.ymax}")
                cfg.setResize(60, 60)
                cfg.setKeepAspectRatio(False)
                node.io['manip_cfg'].send(cfg)
                node.io['manip_img'].send(img)
    """)
    recognition_manip = pipeline.create(dai.node.ImageManip)
    recognition_manip.initialConfig.setResize(60, 60)
    recognition_manip.setWaitForConfigInput(True)
    image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
    image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)

    # Second stange recognition NN
    print("Creating recognition Neural Network...")
    recognition_nn = pipeline.create(dai.node.NeuralNetwork)
    recognition_nn.setBlobPath(blobconverter.from_zoo(name="head-pose-estimation-adas-0001", shaves=6))
    recognition_manip.out.link(recognition_nn.input)

    recognition_xout = pipeline.create(dai.node.XLinkOut)
    recognition_xout.setStreamName("recognition")
    recognition_nn.out.link(recognition_xout.input)

    return pipeline

with dai.Device() as device:
    stereo = 1 < len(device.getConnectedCameras())
    device.startPipeline(create_pipeline(stereo))
    sync = TwoStageHostSeqSync()
    queues = {}
    # Create output queues
    for name in ["color", "detection", "recognition"]:
        queues[name] = device.getOutputQueue(name)

    while True:
        for name, q in queues.items():
            # Add all msgs (color frames, object detections and recognitions) to the Sync class.
            if q.has():
                sync.add_msg(q.get(), name)

        msgs = sync.get_msgs()
        if msgs is not None:
            frame = msgs["color"].getCvFrame()
            detections = msgs["detection"].detections
            recognitions = msgs["recognition"]

            for i, detection in enumerate(detections):
                bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
                roiData = detection.boundingBoxMapping
                roi = roiData.roi
                roi = roi.denormalize(frame.shape[1], frame.shape[0])   # Normalize bounding box
                topLeft = roi.topLeft()
                bottomRight = roi.bottomRight()
                xmin = int(topLeft.x)
                ymin = int(topLeft.y)
                xmax = int(bottomRight.x)
                ymax = int(bottomRight.y)
                # Decoding of recognition results
                rec = recognitions[i]
                yaw = rec.getLayerFp16('angle_y_fc')[0]
                pitch = rec.getLayerFp16('angle_p_fc')[0]
                roll = rec.getLayerFp16('angle_r_fc')[0]
                decode_pose(yaw, pitch, roll, bbox, frame)

                cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
                cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 0), 2)


                y = (bbox[1] + bbox[3]) // 2
                if stereo:
                    # You could also get detection.spatialCoordinates.x and detection.spatialCoordinates.y coordinates
                    coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z/1000)
                    cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 0, 0), 8)
                    cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255), 2)

            cv2.imshow("Camera", frame)
        if cv2.waitKey(1) == ord('q'):
            break

Thanks,
Jaka

    8 days later

    Hi jakaskerl

    I tried rotating the camera 90 degrees for installation and using the code you modified to detect head position and posture information. After entering 'r' on the keyboard, rotate the image by 90 degrees before checking the input model. I used ImageManip to set the angle value to rotate, and another ImageManip to set the size of the image back to (300, 300). However, testing has found that once ImageManip is used, although the image has not been rotated by 90 degrees, the measured ROI area is no longer on the face, but in a distant location. How to modify the ROI area to fit on the face, or is there any other way to rotate the image? Here is my code

    from MultiMsgSync import TwoStageHostSeqSync
    import blobconverter
    import cv2
    import depthai as dai
    from tools import *
    rgbRr = dai.RotatedRect()
    def create_pipeline(stereo):
    pipeline = dai.Pipeline()
    print("Creating Color Camera...")
    cam = pipeline.create(dai.node.ColorCamera)
    cam.setPreviewSize(640, 480)
    cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
    cam.setInterleaved(False)
    cam.setPreviewKeepAspectRatio(False)
    cam.setBoardSocket(dai.CameraBoardSocket.RGB)

    cam_xout = pipeline.create(dai.node.XLinkOut)
    *# cam_xout.setStreamName("color")
    # cam.video.link(cam_xout.input)
    
    *if stereo:
        monoLeft = pipeline.create(dai.node.MonoCamera)
        monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
        monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
    
        monoRight = pipeline.create(dai.node.MonoCamera)
        monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
        monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
    
        stereo = pipeline.create(dai.node.StereoDepth)
        stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
        stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
        monoLeft.out.link(stereo.left)
        monoRight.out.link(stereo.right)
    
        *# Spatial Detection network if OAK-D*
        print("OAK-D detected, app will display spatial coordiantes")
        face_det_nn = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
        stereo.depth.link(face_det_nn.inputDepth)
    else: *# Detection network if OAK-1*
        print("OAK-1 detected, app won't display spatial coordiantes")
        face_det_nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
    
    face_det_nn.setConfidenceThreshold(0.5)
    face_det_nn.setBoundingBoxScaleFactor(0.5)
    face_det_nn.setBlobPath(blobconverter.from_zoo(name="face-detection-retail-0004", shaves=6))
    *# cam.preview.link(face_det_nn.input)
    # ------------------------------------------------------------------------------
    *copy_manip = pipeline.create(dai.node.ImageManip)
    rgbRr.center.x, rgbRr.center.y = cam.getPreviewWidth() // 2, cam.getPreviewHeight() // 2
    rgbRr.size.width, rgbRr.size.height = cam.getPreviewHeight(), cam.getPreviewWidth()
    rgbRr.angle = 0
    copy_manip.initialConfig.setCropRotatedRect(rgbRr, False)
    copy_manip.setNumFramesPool(15)
    copy_manip.setMaxOutputFrameSize(3499200)
    cam.preview.link(copy_manip.inputImage)
    manipRgbCfg = pipeline.create(dai.node.XLinkIn)
    manipRgbCfg.setStreamName("manipCfg")
    manipRgbCfg.out.link(copy_manip.inputConfig)
    face_det_manip = pipeline.create(dai.node.ImageManip)
    face_det_manip.initialConfig.setResize(300,300)
    face_det_manip.initialConfig.setFrameType(dai.RawImgFrame.Type.RGB888p)
    copy_manip.out.link(face_det_manip.inputImage)
    face_det_manip.out.link(face_det_nn.input)
    
    cam_xout.setStreamName("color")
    face_det_manip.out.link(cam_xout.input)
    *# cam.video.link(cam_xout.input)
    # -----------------------------------------------------------------------------------------
    # Send face detections to the host (for bounding boxes)
    *face_det_xout = pipeline.create(dai.node.XLinkOut)
    face_det_xout.setStreamName("detection")
    face_det_nn.out.link(face_det_xout.input)
    
    *# Script node will take the output from the face detection NN as an input and set ImageManipConfig
    # to the 'recognition_manip' to crop the initial frame
    *image_manip_script = pipeline.create(dai.node.Script)
    face_det_nn.out.link(image_manip_script.inputs['face_det_in'])
    
    *# Only send metadata, we are only interested in timestamp, so we can sync
    # depth frames with NN output
    *face_det_nn.passthrough.link(image_manip_script.inputs['passthrough'])
    *# cam.preview.link(image_manip_script.inputs['preview'])*
    face_det_manip.out.link(image_manip_script.inputs['preview'])
    
    image_manip_script.setScript("""
    import time
    msgs = dict()
    
    def add_msg(msg, name, seq = None):
        global msgs
        if seq is None:
            seq = msg.getSequenceNum()
        seq = str(seq)
        # node.warn(f"New msg {name}, seq {seq}")
    
        # Each seq number has it's own dict of msgs
        if seq not in msgs:
            msgs[seq] = dict()
        msgs[seq][name] = msg
    
        # To avoid freezing (not necessary for this ObjDet model)
        if 15 < len(msgs):
            node.warn(f"Removing first element! len {len(msgs)}")
            msgs.popitem() # Remove first element
    
    def get_msgs():
        global msgs
        seq_remove = [] # Arr of sequence numbers to get deleted
        for seq, syncMsgs in msgs.items():
            seq_remove.append(seq) # Will get removed from dict if we find synced msgs pair
            # node.warn(f"Checking sync {seq}")
    
            # Check if we have both detections and color frame with this sequence number
            if len(syncMsgs) == 2: # 1 frame, 1 detection
                for rm in seq_remove:
                    del msgs[rm]
                # node.warn(f"synced {seq}. Removed older sync values. len {len(msgs)}")
                return syncMsgs # Returned synced msgs
        return None
    
    def correct_bb(xmin,ymin,xmax,ymax):
        if xmin < 0: xmin = 0.001
        if ymin < 0: ymin = 0.001
        if xmax > 1: xmax = 0.999
        if ymax > 1: ymax = 0.999
        return [xmin,ymin,xmax,ymax]
    
    while True:
        time.sleep(0.001) # Avoid lazy looping
    
        preview = node.io['preview'].tryGet()
        if preview is not None:
            add_msg(preview, 'preview')
    
        face_dets = node.io['face_det_in'].tryGet()
        if face_dets is not None:
            # TODO: in 2.18.0.0 use face_dets.getSequenceNum()
            passthrough = node.io['passthrough'].get()
            seq = passthrough.getSequenceNum()
            add_msg(face_dets, 'dets', seq)
    
        sync_msgs = get_msgs()
        if sync_msgs is not None:
            img = sync_msgs['preview']
            dets = sync_msgs['dets']
            for i, det in enumerate(dets.detections):
                cfg = ImageManipConfig()
                bb = correct_bb(det.xmin-0.03, det.ymin-0.03, det.xmax+0.03, det.ymax+0.03)
                cfg.setCropRect(\*bb)
                # node.warn(f"Sending {i + 1}. det. Seq {seq}. Det {det.xmin}, {det.ymin}, {det.xmax}, {det.ymax}")
                cfg.setResize(60, 60)
                cfg.setKeepAspectRatio(False)
                node.io['manip_cfg'].send(cfg)
                node.io['manip_img'].send(img)
    """)
    recognition_manip = pipeline.create(dai.node.ImageManip)
    recognition_manip.initialConfig.setResize(60, 60)
    recognition_manip.setWaitForConfigInput(True)
    image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
    image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)
    
    *# Second stange recognition NN*
    print("Creating recognition Neural Network...")
    recognition_nn = pipeline.create(dai.node.NeuralNetwork)
    recognition_nn.setBlobPath(blobconverter.from_zoo(name="head-pose-estimation-adas-0001", shaves=6))
    recognition_manip.out.link(recognition_nn.input)
    
    recognition_xout = pipeline.create(dai.node.XLinkOut)
    recognition_xout.setStreamName("recognition")
    recognition_nn.out.link(recognition_xout.input)
    
    return pipeline

    with dai.Device() as device:
    stereo = 1 < len(device.getConnectedCameras())
    device.startPipeline(create_pipeline(stereo))
    sync = TwoStageHostSeqSync()
    queues = {}
    qManipCfg = device.getInputQueue(name="manipCfg")
    # Create output queues
    for name in ["color", "detection", "recognition"]:
    queues[name] = device.getOutputQueue(name)

    while True:
        for name, q in queues.items():
            *# Add all msgs (color frames, object detections and recognitions) to the Sync class.*
            if q.has():
                sync.add_msg(q.get(), name)
    
        msgs = sync.get_msgs()
        if msgs is not None:
            frame = msgs["color"].getCvFrame()
            detections = msgs["detection"].detections
            recognitions = msgs["recognition"]
    
            for i, detection in enumerate(detections):
                bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
                roiData = detection.boundingBoxMapping
                roi = roiData.roi
                roi = roi.denormalize(frame.shape[1], frame.shape[0])   *# Normalize bounding box*
                topLeft = roi.topLeft()
                bottomRight = roi.bottomRight()
                xmin = int(topLeft.x)
                ymin = int(topLeft.y)
                xmax = int(bottomRight.x)
                ymax = int(bottomRight.y)
                *# Decoding of recognition results*
                rec = recognitions[i]
                yaw = rec.getLayerFp16('angle_y_fc')[0]
                pitch = rec.getLayerFp16('angle_p_fc')[0]
                roll = rec.getLayerFp16('angle_r_fc')[0]
                decode_pose(yaw, pitch, roll, bbox, frame)
    
                cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
                cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 0), 2)
    
    
                y = (bbox[1] + bbox[3]) // 2
                if stereo:
                    *# You could also get detection.spatialCoordinates.x and detection.spatialCoordinates.y coordinates*
                    coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z/1000)
                    cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 0, 0), 8)
                    cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255), 2)
    
            cv2.imshow("Camera", frame)
        key = cv2.waitKey(1)
        if key == ord('q'):
            break
        elif key ==ord('r'):
            new_angle = 90
            cfg = dai.ImageManipConfig()
            rgbRr.angle = new_angle
            cfg.setCropRotatedRect(rgbRr, False)
            qManipCfg.send(cfg)
            print(f"Image rotated to {rgbRr.angle} degrees")

    @walawala111 I'd suggest rotating the frame before inferencing, so then you don't need to do mapping from non-rotated to rotated frame (bounding box / location of face on the image).

      Hi, erik
      I rotated the RGB image and depth information separately, and the code is as follows:
      cam = pipeline.create(dai.node.ColorCamera)
      cam.setPreviewSize(640, 400)
      cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
      cam.setInterleaved(False)
      cam.setPreviewKeepAspectRatio(False)
      cam.setBoardSocket(dai.CameraBoardSocket.RGB)
      copy_manip = pipeline.create(dai.node.ImageManip)
      rgbRr.center.x,rgbRr.center.y = cam.getPreviewWidth() // 2,cam.getPreviewHeight() //2
      rgbRr.size.width, rgbRr.size.height = cam.getPreviewHeight(), cam.getPreviewWidth()
      rgbRr.angle = 90
      copy_manip.initialConfig.setCropRotatedRect(rgbRr, False)
      copy_manip.setNumFramesPool(15)
      copy_manip.setMaxOutputFrameSize(3499200)
      cam.preview.link(copy_manip.inputImage)
      face_det_manip = pipeline.create(dai.node.ImageManip)
      face_det_manip.initialConfig.setResize(300,300)
      face_det_manip.initialConfig.setFrameType(dai.RawImgFrame.Type.RGB888p)
      copy_manip.out.link(face_det_manip.inputImage)
      face_det_manip.out.link(face_det_nn.input)
      cam_xout = pipeline.create(dai.node.XLinkOut)
      cam_xout.setStreamName("color")
      face_det_manip.out.link(cam_xout.input)

      manip_depth = pipeline.create(dai.node.ImageManip)
      rotated_rect = dai.RotatedRect()
      rotated_rect.center.x, rotated_rect.center.y = monoRight.getResolutionWidth() // 2, monoRight.getResolutionHeight() // 2
      rotated_rect.size.width, rotated_rect.size.height = monoRight.getResolutionHeight(), monoRight.getResolutionWidth()
      rotated_rect.angle = 90
      manip_depth.initialConfig.setCropRotatedRect(rotated_rect, False)
      stereo.depth.link(manip_depth.inputImage)
      manip_depth.out.link(face_det_nn.inputDepth)

      It seems that the rotation was successful.
      ![
      ]
      But the detected depth values fluctuate greatly, such as jumping continuously between 600 and 1200mm. What is the reason?
      It seems that it's not just a matter of significant data fluctuations, but also the inaccurate depth data measured.

      Thanks

      • erik replied to this.

        Hi erik
        After installing the camera by rotating it clockwise by 90 degrees, I rotated both the image and depth by 90 degrees, and marked the ROI area with boxes on both the depth map and RGB image. The ROI area does appear on the face in the RGB image, but it deviates a lot from the face in the depth map. I am not sure if it is a problem with the size of the depth map
        The following is my code, which uses tools.ty and MultiMonsSync.by from the gen2 head post detection/pai folder.
        ![
        ](https://)
        ![
        ](https://)

        from MultiMsgSync import TwoStageHostSeqSync
        import blobconverter
        import cv2
        import depthai as dai
        from tools import *
        rgbRr = dai.RotatedRect()
        def create_pipeline(stereo):
            pipeline = dai.Pipeline()
            print("Creating Color Camera...")
            cam = pipeline.create(dai.node.ColorCamera)
            cam.setPreviewSize(640,400)
            cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
            cam.setInterleaved(False)
            cam.setPreviewKeepAspectRatio(False)
            cam.setBoardSocket(dai.CameraBoardSocket.RGB)
            if stereo:
                monoLeft = pipeline.create(dai.node.MonoCamera)
                monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
                monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
                monoRight = pipeline.create(dai.node.MonoCamera)
                monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
                monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
                stereo = pipeline.create(dai.node.StereoDepth)
                stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
                stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
                monoLeft.out.link(stereo.left)
                monoRight.out.link(stereo.right)
                print("OAK-D detected, app will display spatial coordiantes")
                face_det_nn = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
                manip_depth = pipeline.create(dai.node.ImageManip)
                rotated_rect = dai.RotatedRect()
                rotated_rect.center.x, rotated_rect.center.y = monoRight.getResolutionWidth() // 2, monoRight.getResolutionHeight() // 2
                rotated_rect.size.width, rotated_rect.size.height = monoRight.getResolutionHeight(), monoRight.getResolutionWidth()
                rotated_rect.angle = 90
                manip_depth.initialConfig.setCropRotatedRect(rotated_rect, False)
                stereo.depth.link(manip_depth.inputImage)
                manip_depth.out.link(face_det_nn.inputDepth)
            else:
                print("OAK-1 detected, app won't display spatial coordiantes")
                face_det_nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
            face_det_nn.setConfidenceThreshold(0.5)
            face_det_nn.setBoundingBoxScaleFactor(0.5)
            face_det_nn.setBlobPath(blobconverter.from_zoo(name="face-detection-retail-0004", shaves=6))
            copy_manip = pipeline.create(dai.node.ImageManip)
            rgbRr.center.x, rgbRr.center.y = cam.getPreviewWidth() // 2, cam.getPreviewHeight() // 2
            rgbRr.size.width, rgbRr.size.height = cam.getPreviewHeight(), cam.getPreviewWidth()
            rgbRr.angle = 90
            copy_manip.initialConfig.setCropRotatedRect(rgbRr, False)
            copy_manip.setNumFramesPool(15)
            copy_manip.setMaxOutputFrameSize(3499200)
            cam.preview.link(copy_manip.inputImage)
            face_det_manip = pipeline.create(dai.node.ImageManip)
            face_det_manip.initialConfig.setResize(300, 300)
            face_det_manip.initialConfig.setFrameType(dai.RawImgFrame.Type.RGB888p)
            copy_manip.out.link(face_det_manip.inputImage)
            face_det_manip.out.link(face_det_nn.input)
            cam_xout = pipeline.create(dai.node.XLinkOut)
            cam_xout.setStreamName("color")
            face_det_manip.out.link(cam_xout.input)
            face_det_xout = pipeline.create(dai.node.XLinkOut)
            face_det_xout.setStreamName("detection")
            face_det_nn.out.link(face_det_xout.input)
            image_manip_script = pipeline.create(dai.node.Script)
            face_det_nn.out.link(image_manip_script.inputs['face_det_in'])
            face_det_nn.passthrough.link(image_manip_script.inputs['passthrough'])
            cam.preview.link(image_manip_script.inputs['preview'])
            image_manip_script.setScript("""
            import time
            msgs = dict()
            def add_msg(msg, name, seq = None):
                global msgs
                if seq is None:
                    seq = msg.getSequenceNum()
                seq = str(seq)
                if seq not in msgs:
                    msgs[seq] = dict()
                msgs[seq][name] = msg
                if 15 < len(msgs):
                    node.warn(f"Removing first element! len {len(msgs)}")
                    msgs.popitem() # Remove first element
            def get_msgs():
                global msgs
                seq_remove = [] # Arr of sequence numbers to get deleted
                for seq, syncMsgs in msgs.items():
                    seq_remove.append(seq) # Will get removed from dict if we find synced msgs pair
                    if len(syncMsgs) == 2: # 1 frame, 1 detection
                        for rm in seq_remove:
                            del msgs[rm]
                        return syncMsgs # Returned synced msgs
                return None
            def correct_bb(xmin,ymin,xmax,ymax):
                if xmin < 0: xmin = 0.001
                if ymin < 0: ymin = 0.001
                if xmax > 1: xmax = 0.999
                if ymax > 1: ymax = 0.999
                return [xmin,ymin,xmax,ymax]
            while True:
                time.sleep(0.001) # Avoid lazy looping
                preview = node.io['preview'].tryGet()
                if preview is not None:
                    add_msg(preview, 'preview')
                face_dets = node.io['face_det_in'].tryGet()
                if face_dets is not None:
                    passthrough = node.io['passthrough'].get()
                    seq = passthrough.getSequenceNum()
                    add_msg(face_dets, 'dets', seq)
                sync_msgs = get_msgs()
                if sync_msgs is not None:
                    img = sync_msgs['preview']
                    dets = sync_msgs['dets']
                    for i, det in enumerate(dets.detections):
                        cfg = ImageManipConfig()
                        bb = correct_bb(det.xmin-0.03, det.ymin-0.03, det.xmax+0.03, det.ymax+0.03)
                        cfg.setCropRect(*bb)
                        cfg.setResize(60, 60)
                        cfg.setKeepAspectRatio(False)
                        node.io['manip_cfg'].send(cfg)
                        node.io['manip_img'].send(img)
            """)
            recognition_manip = pipeline.create(dai.node.ImageManip)
            recognition_manip.initialConfig.setResize(60, 60)
            recognition_manip.setWaitForConfigInput(True)
            image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
            image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)
            print("Creating recognition Neural Network...")
            recognition_nn = pipeline.create(dai.node.NeuralNetwork)
            recognition_nn.setBlobPath(blobconverter.from_zoo(name="head-pose-estimation-adas-0001", shaves=6))
            recognition_manip.out.link(recognition_nn.input)
            recognition_xout = pipeline.create(dai.node.XLinkOut)
            recognition_xout.setStreamName("recognition")
            xoutDepth = pipeline.create(dai.node.XLinkOut)
            xoutDepth.setStreamName("depth")
            face_det_nn.passthroughDepth.link(xoutDepth.input)
            recognition_nn.out.link(recognition_xout.input)
            return pipeline
        with dai.Device() as device:
            stereo = 1 < len(device.getConnectedCameras())
            device.startPipeline(create_pipeline(stereo))
            sync = TwoStageHostSeqSync()
            queues = {}
            for name in ["color", "detection", "recognition", "depth"]:
                queues[name] = device.getOutputQueue(name)
            depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False)
            while True:
                depth = depthQueue.get()
                for name, q in queues.items():
                    if q.has():
                        sync.add_msg(q.get(), name)
                msgs = sync.get_msgs()
                depthFrame = depth.getFrame()  # depthFrame values are in millimeters
                depth_downscaled = depthFrame[::4]
                if np.all(depth_downscaled == 0):
                    min_depth = 0  # Set a default minimum depth value when all elements are zero
                else:
                    min_depth = np.percentile(depth_downscaled[depth_downscaled != 0], 1)
                max_depth = np.percentile(depth_downscaled, 99)
                depthFrameColor = np.interp(depthFrame, (min_depth, max_depth), (0, 255)).astype(np.uint8)
                depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_TURBO)
                if msgs is not None:
                    frame = msgs["color"].getCvFrame()
                    detections = msgs["detection"].detections
                    recognitions = msgs["recognition"]
                    for i, detection in enumerate(detections):
                        bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
                        roiData = detection.boundingBoxMapping
                        roi = roiData.roi
                        depthroi = roi.denormalize(depthFrameColor.shape[1], depthFrameColor.shape[0])
                        depthtopLeft = depthroi.topLeft()
                        depthbottomRight = depthroi.bottomRight()
                        depthxmin = int(depthtopLeft.x)
                        depthymin = int(depthtopLeft.y)
                        depthxmax = int(depthbottomRight.x)
                        depthymax = int(depthbottomRight.y)
                        cv2.rectangle(depthFrameColor, (depthxmin, depthymin), (depthxmax, depthymax),  (255, 255, 255), 1)
                        roi = roi.denormalize(frame.shape[1], frame.shape[0])   # Normalize bounding box
                        topLeft = roi.topLeft()
                        bottomRight = roi.bottomRight()
                        xmin = int(topLeft.x)
                        ymin = int(topLeft.y)
                        xmax = int(bottomRight.x)
                        ymax = int(bottomRight.y)
                        rec = recognitions[i]
                        yaw = rec.getLayerFp16('angle_y_fc')[0]
                        pitch = rec.getLayerFp16('angle_p_fc')[0]
                        roll = rec.getLayerFp16('angle_r_fc')[0]
                        decode_pose(yaw, pitch, roll, bbox, frame)
                        cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
                        cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 0), 2)
                        y = (bbox[1] + bbox[3]) // 2
                        if stereo:
                            coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z/1000)
                            cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 0, 0), 8)
                            cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255), 2)
                    cv2.imshow("Camera", frame)
                    cv2.imshow("depth", depthFrameColor)
                if cv2.waitKey(1) == ord('q'):
                    break`

        erik
        Yes. After rotating the RGB image and depth map by 90deg, I wanted to recognize the depth data of the face, but after visualizing the depth map and box, I found that the box was not on the face, but in a lower position. And the depth map doesn't seem to match the RGB map, with a smaller viewing angle.
        Thanks

        Hi erik
        I may not have explained the problem I encountered clearly. My goal is to rotate the camera clockwise by 90 degrees and install it to detect the position data (xyz) of the face and the posture angle data (RPY) of the head.
        For RGB images and depth maps, I rotated them separately using ImageManip. However, after visualizing bbox, it was found that the ROI area was not on the face.
        here is the mre
        Thanks in advance!

        Hi @walawala111
        I think this might be an issue of imageManip not passing the rotation information to the spatialLocationCalculator.

        Would have to check that with the team.

        Thanks,
        Jaka

          6 days later

          @walawala111 200 lines of code is not an MRE. Please distil it down to minimal repro example and we can take a look into it.

            Hi walawala111
            It's manip issue. In order to properly set the spatial bounding box of a rotated (transformed) image, you would need the order of operations that were applied to the start image, the undistortion mesh; as well as intrinsics of both stereo as well as color cameras. Current implementation of ImageManip node apparently does not allow this information passthrough.
            DepthaiV3 aims to fix this issue.

            Thanks,
            Jaka