Hi,jakaskerl

The above code can indeed accurately identify the location information of the face. But I want to obtain both the location information of the face and the head pose at the same time. How can I achieve this?

Thanks

    walawala111
    Basically feed the detection into a manip and send the crop to the pose estimation model.

    I'll probably be fixing the example in the upcoming week.

    Thanks,
    Jaka

      walawala111
      LMK if it works:

      reqs:

      opencv-python==4.5.5.64
      blobconverter==1.4.3
      depthai==2.27
      numpy<2.0.0
      import blobconverter
      import cv2
      import depthai as dai
      from tools import *
      from datetime import timedelta
      
      def frame_norm(frame, bbox):
           h, w = frame.shape[:2]
           return [
                int(bbox[0] * w),
                int(bbox[1] * h),
                int(bbox[2] * w),
                int(bbox[3] * h)
           ]
      
      def create_pipeline():
          pipeline = dai.Pipeline()
      
          print("Creating Color Camera...")
          cam = pipeline.create(dai.node.ColorCamera)
          cam.setPreviewSize(300, 300)
          cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_800_P)
          cam.setInterleaved(False)
          cam.setBoardSocket(dai.CameraBoardSocket.RGB)
          cam.setPreviewKeepAspectRatio(False)
      
          # Passthrough manip
          face_det_manip = pipeline.create(dai.node.ImageManip)
          cam.preview.link(face_det_manip.inputImage)
      
          
          monoLeft = pipeline.create(dai.node.MonoCamera)
          monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
          monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
      
          monoRight = pipeline.create(dai.node.MonoCamera)
          monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
          monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
      
          stereo = pipeline.create(dai.node.StereoDepth)
          stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
          stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
          monoLeft.out.link(stereo.left)
          monoRight.out.link(stereo.right)
      
          # Spatial Detection network
          face_det_nn = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
          face_det_nn.setBoundingBoxScaleFactor(0.8)
          stereo.depth.link(face_det_nn.inputDepth)
          
          face_det_nn.setConfidenceThreshold(0.5)
          face_det_nn.setBlobPath(blobconverter.from_zoo(name="face-detection-retail-0005", shaves=6))
      
          cam.preview.link(face_det_nn.input)
          # face_det_manip.out.link(face_det_nn.input) # Passthrough manip
      
          # Script node will take the output from the face detection NN as an input and set ImageManipConfig
          # to crop the initial frame
          image_manip_script = pipeline.create(dai.node.Script)
          face_det_nn.out.link(image_manip_script.inputs['face_det_in'])
          cam.preview.link(image_manip_script.inputs['preview'])
      
          image_manip_script.setScript("""
          import time
      
          def correct_bb(xmin,ymin,xmax,ymax):
              if xmin < 0: xmin = 0.001
              if ymin < 0: ymin = 0.001
              if xmax > 1: xmax = 0.999
              if ymax > 1: ymax = 0.999
              return [xmin,ymin,xmax,ymax]
      
          while True:
              face_dets = node.io['face_det_in'].tryGet()
              if face_dets is not None:
                  img = node.io['preview'].get()
                  for i, det in enumerate(face_dets.detections):
                      cfg = ImageManipConfig()
                      bb = correct_bb(det.xmin-0.03, det.ymin-0.03, det.xmax+0.03, det.ymax+0.03)
                      cfg.setCropRect(*bb)
                      cfg.setResize(60, 60)
                      cfg.setKeepAspectRatio(True)
                      node.io['manip_cfg'].send(cfg)
                      node.io['manip_img'].send(img)
              time.sleep(0.001)  # Avoid lazy looping
          """)
      
          # ImageManip for cropping and resizing face detections
          recognition_manip = pipeline.create(dai.node.ImageManip)
          recognition_manip.initialConfig.setResize(60, 60)
          recognition_manip.setWaitForConfigInput(True)
          image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
          image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)
      
          # Second stage recognition NN
          print("Creating recognition Neural Network...")
          recognition_nn = pipeline.create(dai.node.NeuralNetwork)
          recognition_nn.setBlobPath(blobconverter.from_zoo(name="head-pose-estimation-adas-0001", shaves=6))
          recognition_manip.out.link(recognition_nn.input)
      
          
      
          # Synced output 
          sync_xout = pipeline.create(dai.node.XLinkOut)
          sync_xout.setStreamName("sync")
      
      
          # Sync all streams
          sync = pipeline.create(dai.node.Sync)
          cam.video.link(sync.inputs["color"])
          face_det_nn.out.link(sync.inputs["detection"])
          recognition_nn.out.link(sync.inputs["recognition"])
      
          sync.setSyncThreshold(timedelta(milliseconds=40))
          sync.out.link(sync_xout.input)
      
      
          return pipeline
      
      with dai.Device() as device:
          device.startPipeline(create_pipeline())
      
          inSync = device.getOutputQueue("sync", 1, False)
      
          while True:
      
              msgGrp = inSync.get()
              frame = msgGrp["color"].getCvFrame()
              detections = msgGrp["detection"].detections
              recognitions = msgGrp["recognition"]
      
              if frame is not None:
                  for i, detection in enumerate(detections):
                      bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
                      print(i, bbox, detection.label, detection.spatialCoordinates.z/1000)
                      roiData = detection.boundingBoxMapping
                      roi = roiData.roi
                      roi = roi.denormalize(frame.shape[1], frame.shape[0])   # Normalize bounding box
                      topLeft = roi.topLeft()
                      bottomRight = roi.bottomRight()
                      xmin = int(topLeft.x)
                      ymin = int(topLeft.y)
                      xmax = int(bottomRight.x)
                      ymax = int(bottomRight.y)
      
                      # Decoding of recognition results
                      rec = recognitions
                      yaw = rec.getLayerFp16('angle_y_fc')[0]
                      pitch = rec.getLayerFp16('angle_p_fc')[0]
                      roll = rec.getLayerFp16('angle_r_fc')[0]
                      decode_pose(yaw, pitch, roll, bbox, frame)
      
                      # Spatial BBOX mapping
                      cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 0), 2)
      
                      # Detection BBOX
                      cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
      
      
                      y = (bbox[1] + bbox[3]) // 2
                      
                      coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z/1000)
                      cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 0, 0), 8)
                      cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255), 2)
      
                  cv2.imshow("Camera", frame)
      
              if cv2.waitKey(1) == ord('q'):
                  break

      Thanks,
      Jaka

        Hi!jakaskerl

        I tested it and found that when the camera is turned on and there is a face in the image, the measured depth and pose information are accurate. But if there is no face within the visible range of the camera when it is turned on, the code will get stuck. Even if a face appears in the lens after the camera is turned on, the code will still be stuck and will not run normally

        I don't know if it's caused by synchronization. I made the following modifications, but they were not successful。

        import blobconverter
        import cv2
        import depthai as dai
        from tools import *
        from datetime import timedelta

        def frame_norm(frame, bbox):
        h, w = frame.shape[:2]
        return [
        int(bbox[0] * w),
        int(bbox[1] * h),
        int(bbox[2] * w),
        int(bbox[3] * h)
        ]

        def create_pipeline():
        pipeline = dai.Pipeline()

        print("Creating Color Camera...")
        cam = pipeline.create(dai.node.ColorCamera)
        cam.setPreviewSize(300, 300)
        cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
        cam.setInterleaved(False)
        cam.setBoardSocket(dai.CameraBoardSocket.RGB)
        cam.setPreviewKeepAspectRatio(False)
        
        # Passthrough manip
        face_det_manip = pipeline.create(dai.node.ImageManip)
        cam.preview.link(face_det_manip.inputImage)
        
        monoLeft = pipeline.create(dai.node.MonoCamera)
        monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
        monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
        
        monoRight = pipeline.create(dai.node.MonoCamera)
        monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
        monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
        
        stereo = pipeline.create(dai.node.StereoDepth)
        stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
        stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
        monoLeft.out.link(stereo.left)
        monoRight.out.link(stereo.right)
        
        # Spatial Detection network
        face_det_nn = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
        face_det_nn.setBoundingBoxScaleFactor(0.8)
        stereo.depth.link(face_det_nn.inputDepth)
        
        face_det_nn.setConfidenceThreshold(0.5)
        face_det_nn.setBlobPath(blobconverter.from_zoo(name="face-detection-retail-0005", shaves=6))
        
        cam.preview.link(face_det_nn.input)
        # face_det_manip.out.link(face_det_nn.input) # Passthrough manip
        
        # Script node will take the output from the face detection NN as an input and set ImageManipConfig
        # to crop the initial frame
        image_manip_script = pipeline.create(dai.node.Script)
        face_det_nn.out.link(image_manip_script.inputs['face_det_in'])
        cam.preview.link(image_manip_script.inputs['preview'])
        
        image_manip_script.setScript("""
        import time
        
        def correct_bb(xmin,ymin,xmax,ymax):
            if xmin < 0: xmin = 0.001
            if ymin < 0: ymin = 0.001
            if xmax > 1: xmax = 0.999
            if ymax > 1: ymax = 0.999
            return [xmin,ymin,xmax,ymax]
        
        while True:
            face_dets = node.io['face_det_in'].tryGet()
            if face_dets is not None:
                img = node.io['preview'].get()
                for i, det in enumerate(face_dets.detections):
                    cfg = ImageManipConfig()
                    bb = correct_bb(det.xmin-0.03, det.ymin-0.03, det.xmax+0.03, det.ymax+0.03)
                    cfg.setCropRect(*bb)
                    cfg.setResize(60, 60)
                    cfg.setKeepAspectRatio(True)
                    node.io['manip_cfg'].send(cfg)
                    node.io['manip_img'].send(img)
            time.sleep(0.001)  # Avoid lazy looping
        """)
        
        # ImageManip for cropping and resizing face detections
        recognition_manip = pipeline.create(dai.node.ImageManip)
        recognition_manip.initialConfig.setResize(60, 60)
        recognition_manip.setWaitForConfigInput(True)
        image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
        image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)
        
        # Second stage recognition NN
        print("Creating recognition Neural Network...")
        recognition_nn = pipeline.create(dai.node.NeuralNetwork)
        recognition_nn.setBlobPath(blobconverter.from_zoo(name="head-pose-estimation-adas-0001", shaves=6))
        recognition_manip.out.link(recognition_nn.input)
        # Synced output
        sync_xout = pipeline.create(dai.node.XLinkOut)
        sync_xout.setStreamName("sync")
        # Sync all streams
        sync = pipeline.create(dai.node.Sync)
        # cam.video.link(sync.inputs["color"])
        face_det_nn.out.link(sync.inputs["detection"])
        recognition_nn.out.link(sync.inputs["recognition"])
        
        sync.setSyncThreshold(timedelta(milliseconds=40))
        sync.out.link(sync_xout.input)
        
        cam_out = pipeline.create(dai.node.XLinkOut)
        cam_out.setStreamName("color")
        cam.video.link(cam_out.input)
        
        return pipeline

        with dai.Device() as device:
        device.startPipeline(create_pipeline())

        inSync = device.getOutputQueue("sync", 1, False)
        incolor = device.getOutputQueue("color",1,False)
        while True:
            msgGrp = inSync.get()
            frame = incolor.get().getCvFrame()
            detections = msgGrp["detection"].detections
            recognitions = msgGrp["recognition"]
            if frame is not None:
                for i, detection in enumerate(detections):
                    bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
                    print(i, bbox, detection.label, detection.spatialCoordinates.z / 1000)
                    roiData = detection.boundingBoxMapping
                    roi = roiData.roi
                    roi = roi.denormalize(frame.shape[1], frame.shape[0])  # Normalize bounding box
                    topLeft = roi.topLeft()
                    bottomRight = roi.bottomRight()
                    xmin = int(topLeft.x)
                    ymin = int(topLeft.y)
                    xmax = int(bottomRight.x)
                    ymax = int(bottomRight.y)
        
                    # Decoding of recognition results
                    rec = recognitions
                    yaw = rec.getLayerFp16('angle_y_fc')[0]
                    pitch = rec.getLayerFp16('angle_p_fc')[0]
                    roll = rec.getLayerFp16('angle_r_fc')[0]
                    decode_pose(yaw, pitch, roll, bbox, frame)
        
                    # Spatial BBOX mapping
                    cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 0), 2)
        
                    # Detection BBOX
                    cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
        
                    y = (bbox[1] + bbox[3]) // 2
        
                    coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z / 1000)
                    cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 0, 0), 8)
                    cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255), 2)
        
                cv2.imshow("Camera", frame)
        
            if cv2.waitKey(1) == ord('q'):
                break

        Thanks

        Hi jakaskerl
        We conducted a detailed test on the part of head posture recognition and found that the RPY angle recognized was inaccurate and did not change with the change of head posture. The values kept jumping around without any regularity.
        Thanks

          walawala111
          This one should work now.

          from MultiMsgSync import TwoStageHostSeqSync
          import blobconverter
          import cv2
          import depthai as dai
          from tools import *
          
          def create_pipeline(stereo):
              pipeline = dai.Pipeline()
          
              print("Creating Color Camera...")
              cam = pipeline.create(dai.node.ColorCamera)
              cam.setPreviewSize(300, 300)
              cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
              cam.setInterleaved(False)
              cam.setPreviewKeepAspectRatio(False)
              cam.setBoardSocket(dai.CameraBoardSocket.RGB)
          
              cam_xout = pipeline.create(dai.node.XLinkOut)
              cam_xout.setStreamName("color")
              cam.video.link(cam_xout.input)
          
              if stereo:
                  monoLeft = pipeline.create(dai.node.MonoCamera)
                  monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
                  monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
          
                  monoRight = pipeline.create(dai.node.MonoCamera)
                  monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
                  monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
          
                  stereo = pipeline.create(dai.node.StereoDepth)
                  stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
                  stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
                  monoLeft.out.link(stereo.left)
                  monoRight.out.link(stereo.right)
          
                  # Spatial Detection network if OAK-D
                  print("OAK-D detected, app will display spatial coordiantes")
                  face_det_nn = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
                  stereo.depth.link(face_det_nn.inputDepth)
              else: # Detection network if OAK-1
                  print("OAK-1 detected, app won't display spatial coordiantes")
                  face_det_nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
          
              face_det_nn.setConfidenceThreshold(0.5)
              face_det_nn.setBoundingBoxScaleFactor(0.5)
              face_det_nn.setBlobPath(blobconverter.from_zoo(name="face-detection-retail-0004", shaves=6))
              cam.preview.link(face_det_nn.input)
          
              # Send face detections to the host (for bounding boxes)
              face_det_xout = pipeline.create(dai.node.XLinkOut)
              face_det_xout.setStreamName("detection")
              face_det_nn.out.link(face_det_xout.input)
          
              # Script node will take the output from the face detection NN as an input and set ImageManipConfig
              # to the 'recognition_manip' to crop the initial frame
              image_manip_script = pipeline.create(dai.node.Script)
              face_det_nn.out.link(image_manip_script.inputs['face_det_in'])
          
              # Only send metadata, we are only interested in timestamp, so we can sync
              # depth frames with NN output
              face_det_nn.passthrough.link(image_manip_script.inputs['passthrough'])
              cam.preview.link(image_manip_script.inputs['preview'])
          
              image_manip_script.setScript("""
              import time
              msgs = dict()
          
              def add_msg(msg, name, seq = None):
                  global msgs
                  if seq is None:
                      seq = msg.getSequenceNum()
                  seq = str(seq)
                  # node.warn(f"New msg {name}, seq {seq}")
          
                  # Each seq number has it's own dict of msgs
                  if seq not in msgs:
                      msgs[seq] = dict()
                  msgs[seq][name] = msg
          
                  # To avoid freezing (not necessary for this ObjDet model)
                  if 15 < len(msgs):
                      node.warn(f"Removing first element! len {len(msgs)}")
                      msgs.popitem() # Remove first element
          
              def get_msgs():
                  global msgs
                  seq_remove = [] # Arr of sequence numbers to get deleted
                  for seq, syncMsgs in msgs.items():
                      seq_remove.append(seq) # Will get removed from dict if we find synced msgs pair
                      # node.warn(f"Checking sync {seq}")
          
                      # Check if we have both detections and color frame with this sequence number
                      if len(syncMsgs) == 2: # 1 frame, 1 detection
                          for rm in seq_remove:
                              del msgs[rm]
                          # node.warn(f"synced {seq}. Removed older sync values. len {len(msgs)}")
                          return syncMsgs # Returned synced msgs
                  return None
          
              def correct_bb(xmin,ymin,xmax,ymax):
                  if xmin < 0: xmin = 0.001
                  if ymin < 0: ymin = 0.001
                  if xmax > 1: xmax = 0.999
                  if ymax > 1: ymax = 0.999
                  return [xmin,ymin,xmax,ymax]
          
              while True:
                  time.sleep(0.001) # Avoid lazy looping
          
                  preview = node.io['preview'].tryGet()
                  if preview is not None:
                      add_msg(preview, 'preview')
          
                  face_dets = node.io['face_det_in'].tryGet()
                  if face_dets is not None:
                      # TODO: in 2.18.0.0 use face_dets.getSequenceNum()
                      passthrough = node.io['passthrough'].get()
                      seq = passthrough.getSequenceNum()
                      add_msg(face_dets, 'dets', seq)
          
                  sync_msgs = get_msgs()
                  if sync_msgs is not None:
                      img = sync_msgs['preview']
                      dets = sync_msgs['dets']
                      for i, det in enumerate(dets.detections):
                          cfg = ImageManipConfig()
                          bb = correct_bb(det.xmin-0.03, det.ymin-0.03, det.xmax+0.03, det.ymax+0.03)
                          cfg.setCropRect(*bb)
                          # node.warn(f"Sending {i + 1}. det. Seq {seq}. Det {det.xmin}, {det.ymin}, {det.xmax}, {det.ymax}")
                          cfg.setResize(60, 60)
                          cfg.setKeepAspectRatio(False)
                          node.io['manip_cfg'].send(cfg)
                          node.io['manip_img'].send(img)
              """)
              recognition_manip = pipeline.create(dai.node.ImageManip)
              recognition_manip.initialConfig.setResize(60, 60)
              recognition_manip.setWaitForConfigInput(True)
              image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
              image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)
          
              # Second stange recognition NN
              print("Creating recognition Neural Network...")
              recognition_nn = pipeline.create(dai.node.NeuralNetwork)
              recognition_nn.setBlobPath(blobconverter.from_zoo(name="head-pose-estimation-adas-0001", shaves=6))
              recognition_manip.out.link(recognition_nn.input)
          
              recognition_xout = pipeline.create(dai.node.XLinkOut)
              recognition_xout.setStreamName("recognition")
              recognition_nn.out.link(recognition_xout.input)
          
              return pipeline
          
          with dai.Device() as device:
              stereo = 1 < len(device.getConnectedCameras())
              device.startPipeline(create_pipeline(stereo))
              sync = TwoStageHostSeqSync()
              queues = {}
              # Create output queues
              for name in ["color", "detection", "recognition"]:
                  queues[name] = device.getOutputQueue(name)
          
              while True:
                  for name, q in queues.items():
                      # Add all msgs (color frames, object detections and recognitions) to the Sync class.
                      if q.has():
                          sync.add_msg(q.get(), name)
          
                  msgs = sync.get_msgs()
                  if msgs is not None:
                      frame = msgs["color"].getCvFrame()
                      detections = msgs["detection"].detections
                      recognitions = msgs["recognition"]
          
                      for i, detection in enumerate(detections):
                          bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
                          roiData = detection.boundingBoxMapping
                          roi = roiData.roi
                          roi = roi.denormalize(frame.shape[1], frame.shape[0])   # Normalize bounding box
                          topLeft = roi.topLeft()
                          bottomRight = roi.bottomRight()
                          xmin = int(topLeft.x)
                          ymin = int(topLeft.y)
                          xmax = int(bottomRight.x)
                          ymax = int(bottomRight.y)
                          # Decoding of recognition results
                          rec = recognitions[i]
                          yaw = rec.getLayerFp16('angle_y_fc')[0]
                          pitch = rec.getLayerFp16('angle_p_fc')[0]
                          roll = rec.getLayerFp16('angle_r_fc')[0]
                          decode_pose(yaw, pitch, roll, bbox, frame)
          
                          cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
                          cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 0), 2)
          
          
                          y = (bbox[1] + bbox[3]) // 2
                          if stereo:
                              # You could also get detection.spatialCoordinates.x and detection.spatialCoordinates.y coordinates
                              coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z/1000)
                              cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 0, 0), 8)
                              cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255), 2)
          
                      cv2.imshow("Camera", frame)
                  if cv2.waitKey(1) == ord('q'):
                      break

          Thanks,
          Jaka

            8 days later

            Hi jakaskerl

            I tried rotating the camera 90 degrees for installation and using the code you modified to detect head position and posture information. After entering 'r' on the keyboard, rotate the image by 90 degrees before checking the input model. I used ImageManip to set the angle value to rotate, and another ImageManip to set the size of the image back to (300, 300). However, testing has found that once ImageManip is used, although the image has not been rotated by 90 degrees, the measured ROI area is no longer on the face, but in a distant location. How to modify the ROI area to fit on the face, or is there any other way to rotate the image? Here is my code

            from MultiMsgSync import TwoStageHostSeqSync
            import blobconverter
            import cv2
            import depthai as dai
            from tools import *
            rgbRr = dai.RotatedRect()
            def create_pipeline(stereo):
            pipeline = dai.Pipeline()
            print("Creating Color Camera...")
            cam = pipeline.create(dai.node.ColorCamera)
            cam.setPreviewSize(640, 480)
            cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
            cam.setInterleaved(False)
            cam.setPreviewKeepAspectRatio(False)
            cam.setBoardSocket(dai.CameraBoardSocket.RGB)

            cam_xout = pipeline.create(dai.node.XLinkOut)
            *# cam_xout.setStreamName("color")
            # cam.video.link(cam_xout.input)
            
            *if stereo:
                monoLeft = pipeline.create(dai.node.MonoCamera)
                monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
                monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
            
                monoRight = pipeline.create(dai.node.MonoCamera)
                monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
                monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
            
                stereo = pipeline.create(dai.node.StereoDepth)
                stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
                stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
                monoLeft.out.link(stereo.left)
                monoRight.out.link(stereo.right)
            
                *# Spatial Detection network if OAK-D*
                print("OAK-D detected, app will display spatial coordiantes")
                face_det_nn = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
                stereo.depth.link(face_det_nn.inputDepth)
            else: *# Detection network if OAK-1*
                print("OAK-1 detected, app won't display spatial coordiantes")
                face_det_nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
            
            face_det_nn.setConfidenceThreshold(0.5)
            face_det_nn.setBoundingBoxScaleFactor(0.5)
            face_det_nn.setBlobPath(blobconverter.from_zoo(name="face-detection-retail-0004", shaves=6))
            *# cam.preview.link(face_det_nn.input)
            # ------------------------------------------------------------------------------
            *copy_manip = pipeline.create(dai.node.ImageManip)
            rgbRr.center.x, rgbRr.center.y = cam.getPreviewWidth() // 2, cam.getPreviewHeight() // 2
            rgbRr.size.width, rgbRr.size.height = cam.getPreviewHeight(), cam.getPreviewWidth()
            rgbRr.angle = 0
            copy_manip.initialConfig.setCropRotatedRect(rgbRr, False)
            copy_manip.setNumFramesPool(15)
            copy_manip.setMaxOutputFrameSize(3499200)
            cam.preview.link(copy_manip.inputImage)
            manipRgbCfg = pipeline.create(dai.node.XLinkIn)
            manipRgbCfg.setStreamName("manipCfg")
            manipRgbCfg.out.link(copy_manip.inputConfig)
            face_det_manip = pipeline.create(dai.node.ImageManip)
            face_det_manip.initialConfig.setResize(300,300)
            face_det_manip.initialConfig.setFrameType(dai.RawImgFrame.Type.RGB888p)
            copy_manip.out.link(face_det_manip.inputImage)
            face_det_manip.out.link(face_det_nn.input)
            
            cam_xout.setStreamName("color")
            face_det_manip.out.link(cam_xout.input)
            *# cam.video.link(cam_xout.input)
            # -----------------------------------------------------------------------------------------
            # Send face detections to the host (for bounding boxes)
            *face_det_xout = pipeline.create(dai.node.XLinkOut)
            face_det_xout.setStreamName("detection")
            face_det_nn.out.link(face_det_xout.input)
            
            *# Script node will take the output from the face detection NN as an input and set ImageManipConfig
            # to the 'recognition_manip' to crop the initial frame
            *image_manip_script = pipeline.create(dai.node.Script)
            face_det_nn.out.link(image_manip_script.inputs['face_det_in'])
            
            *# Only send metadata, we are only interested in timestamp, so we can sync
            # depth frames with NN output
            *face_det_nn.passthrough.link(image_manip_script.inputs['passthrough'])
            *# cam.preview.link(image_manip_script.inputs['preview'])*
            face_det_manip.out.link(image_manip_script.inputs['preview'])
            
            image_manip_script.setScript("""
            import time
            msgs = dict()
            
            def add_msg(msg, name, seq = None):
                global msgs
                if seq is None:
                    seq = msg.getSequenceNum()
                seq = str(seq)
                # node.warn(f"New msg {name}, seq {seq}")
            
                # Each seq number has it's own dict of msgs
                if seq not in msgs:
                    msgs[seq] = dict()
                msgs[seq][name] = msg
            
                # To avoid freezing (not necessary for this ObjDet model)
                if 15 < len(msgs):
                    node.warn(f"Removing first element! len {len(msgs)}")
                    msgs.popitem() # Remove first element
            
            def get_msgs():
                global msgs
                seq_remove = [] # Arr of sequence numbers to get deleted
                for seq, syncMsgs in msgs.items():
                    seq_remove.append(seq) # Will get removed from dict if we find synced msgs pair
                    # node.warn(f"Checking sync {seq}")
            
                    # Check if we have both detections and color frame with this sequence number
                    if len(syncMsgs) == 2: # 1 frame, 1 detection
                        for rm in seq_remove:
                            del msgs[rm]
                        # node.warn(f"synced {seq}. Removed older sync values. len {len(msgs)}")
                        return syncMsgs # Returned synced msgs
                return None
            
            def correct_bb(xmin,ymin,xmax,ymax):
                if xmin < 0: xmin = 0.001
                if ymin < 0: ymin = 0.001
                if xmax > 1: xmax = 0.999
                if ymax > 1: ymax = 0.999
                return [xmin,ymin,xmax,ymax]
            
            while True:
                time.sleep(0.001) # Avoid lazy looping
            
                preview = node.io['preview'].tryGet()
                if preview is not None:
                    add_msg(preview, 'preview')
            
                face_dets = node.io['face_det_in'].tryGet()
                if face_dets is not None:
                    # TODO: in 2.18.0.0 use face_dets.getSequenceNum()
                    passthrough = node.io['passthrough'].get()
                    seq = passthrough.getSequenceNum()
                    add_msg(face_dets, 'dets', seq)
            
                sync_msgs = get_msgs()
                if sync_msgs is not None:
                    img = sync_msgs['preview']
                    dets = sync_msgs['dets']
                    for i, det in enumerate(dets.detections):
                        cfg = ImageManipConfig()
                        bb = correct_bb(det.xmin-0.03, det.ymin-0.03, det.xmax+0.03, det.ymax+0.03)
                        cfg.setCropRect(\*bb)
                        # node.warn(f"Sending {i + 1}. det. Seq {seq}. Det {det.xmin}, {det.ymin}, {det.xmax}, {det.ymax}")
                        cfg.setResize(60, 60)
                        cfg.setKeepAspectRatio(False)
                        node.io['manip_cfg'].send(cfg)
                        node.io['manip_img'].send(img)
            """)
            recognition_manip = pipeline.create(dai.node.ImageManip)
            recognition_manip.initialConfig.setResize(60, 60)
            recognition_manip.setWaitForConfigInput(True)
            image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
            image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)
            
            *# Second stange recognition NN*
            print("Creating recognition Neural Network...")
            recognition_nn = pipeline.create(dai.node.NeuralNetwork)
            recognition_nn.setBlobPath(blobconverter.from_zoo(name="head-pose-estimation-adas-0001", shaves=6))
            recognition_manip.out.link(recognition_nn.input)
            
            recognition_xout = pipeline.create(dai.node.XLinkOut)
            recognition_xout.setStreamName("recognition")
            recognition_nn.out.link(recognition_xout.input)
            
            return pipeline

            with dai.Device() as device:
            stereo = 1 < len(device.getConnectedCameras())
            device.startPipeline(create_pipeline(stereo))
            sync = TwoStageHostSeqSync()
            queues = {}
            qManipCfg = device.getInputQueue(name="manipCfg")
            # Create output queues
            for name in ["color", "detection", "recognition"]:
            queues[name] = device.getOutputQueue(name)

            while True:
                for name, q in queues.items():
                    *# Add all msgs (color frames, object detections and recognitions) to the Sync class.*
                    if q.has():
                        sync.add_msg(q.get(), name)
            
                msgs = sync.get_msgs()
                if msgs is not None:
                    frame = msgs["color"].getCvFrame()
                    detections = msgs["detection"].detections
                    recognitions = msgs["recognition"]
            
                    for i, detection in enumerate(detections):
                        bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
                        roiData = detection.boundingBoxMapping
                        roi = roiData.roi
                        roi = roi.denormalize(frame.shape[1], frame.shape[0])   *# Normalize bounding box*
                        topLeft = roi.topLeft()
                        bottomRight = roi.bottomRight()
                        xmin = int(topLeft.x)
                        ymin = int(topLeft.y)
                        xmax = int(bottomRight.x)
                        ymax = int(bottomRight.y)
                        *# Decoding of recognition results*
                        rec = recognitions[i]
                        yaw = rec.getLayerFp16('angle_y_fc')[0]
                        pitch = rec.getLayerFp16('angle_p_fc')[0]
                        roll = rec.getLayerFp16('angle_r_fc')[0]
                        decode_pose(yaw, pitch, roll, bbox, frame)
            
                        cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
                        cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 0), 2)
            
            
                        y = (bbox[1] + bbox[3]) // 2
                        if stereo:
                            *# You could also get detection.spatialCoordinates.x and detection.spatialCoordinates.y coordinates*
                            coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z/1000)
                            cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 0, 0), 8)
                            cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255), 2)
            
                    cv2.imshow("Camera", frame)
                key = cv2.waitKey(1)
                if key == ord('q'):
                    break
                elif key ==ord('r'):
                    new_angle = 90
                    cfg = dai.ImageManipConfig()
                    rgbRr.angle = new_angle
                    cfg.setCropRotatedRect(rgbRr, False)
                    qManipCfg.send(cfg)
                    print(f"Image rotated to {rgbRr.angle} degrees")

            @walawala111 I'd suggest rotating the frame before inferencing, so then you don't need to do mapping from non-rotated to rotated frame (bounding box / location of face on the image).

              Hi, erik
              I rotated the RGB image and depth information separately, and the code is as follows:
              cam = pipeline.create(dai.node.ColorCamera)
              cam.setPreviewSize(640, 400)
              cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
              cam.setInterleaved(False)
              cam.setPreviewKeepAspectRatio(False)
              cam.setBoardSocket(dai.CameraBoardSocket.RGB)
              copy_manip = pipeline.create(dai.node.ImageManip)
              rgbRr.center.x,rgbRr.center.y = cam.getPreviewWidth() // 2,cam.getPreviewHeight() //2
              rgbRr.size.width, rgbRr.size.height = cam.getPreviewHeight(), cam.getPreviewWidth()
              rgbRr.angle = 90
              copy_manip.initialConfig.setCropRotatedRect(rgbRr, False)
              copy_manip.setNumFramesPool(15)
              copy_manip.setMaxOutputFrameSize(3499200)
              cam.preview.link(copy_manip.inputImage)
              face_det_manip = pipeline.create(dai.node.ImageManip)
              face_det_manip.initialConfig.setResize(300,300)
              face_det_manip.initialConfig.setFrameType(dai.RawImgFrame.Type.RGB888p)
              copy_manip.out.link(face_det_manip.inputImage)
              face_det_manip.out.link(face_det_nn.input)
              cam_xout = pipeline.create(dai.node.XLinkOut)
              cam_xout.setStreamName("color")
              face_det_manip.out.link(cam_xout.input)

              manip_depth = pipeline.create(dai.node.ImageManip)
              rotated_rect = dai.RotatedRect()
              rotated_rect.center.x, rotated_rect.center.y = monoRight.getResolutionWidth() // 2, monoRight.getResolutionHeight() // 2
              rotated_rect.size.width, rotated_rect.size.height = monoRight.getResolutionHeight(), monoRight.getResolutionWidth()
              rotated_rect.angle = 90
              manip_depth.initialConfig.setCropRotatedRect(rotated_rect, False)
              stereo.depth.link(manip_depth.inputImage)
              manip_depth.out.link(face_det_nn.inputDepth)

              It seems that the rotation was successful.
              ![
              ]
              But the detected depth values fluctuate greatly, such as jumping continuously between 600 and 1200mm. What is the reason?
              It seems that it's not just a matter of significant data fluctuations, but also the inaccurate depth data measured.

              Thanks

              • erik replied to this.

                Hi erik
                After installing the camera by rotating it clockwise by 90 degrees, I rotated both the image and depth by 90 degrees, and marked the ROI area with boxes on both the depth map and RGB image. The ROI area does appear on the face in the RGB image, but it deviates a lot from the face in the depth map. I am not sure if it is a problem with the size of the depth map
                The following is my code, which uses tools.ty and MultiMonsSync.by from the gen2 head post detection/pai folder.
                ![
                ](https://)
                ![
                ](https://)

                from MultiMsgSync import TwoStageHostSeqSync
                import blobconverter
                import cv2
                import depthai as dai
                from tools import *
                rgbRr = dai.RotatedRect()
                def create_pipeline(stereo):
                    pipeline = dai.Pipeline()
                    print("Creating Color Camera...")
                    cam = pipeline.create(dai.node.ColorCamera)
                    cam.setPreviewSize(640,400)
                    cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
                    cam.setInterleaved(False)
                    cam.setPreviewKeepAspectRatio(False)
                    cam.setBoardSocket(dai.CameraBoardSocket.RGB)
                    if stereo:
                        monoLeft = pipeline.create(dai.node.MonoCamera)
                        monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
                        monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
                        monoRight = pipeline.create(dai.node.MonoCamera)
                        monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
                        monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
                        stereo = pipeline.create(dai.node.StereoDepth)
                        stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
                        stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
                        monoLeft.out.link(stereo.left)
                        monoRight.out.link(stereo.right)
                        print("OAK-D detected, app will display spatial coordiantes")
                        face_det_nn = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)
                        manip_depth = pipeline.create(dai.node.ImageManip)
                        rotated_rect = dai.RotatedRect()
                        rotated_rect.center.x, rotated_rect.center.y = monoRight.getResolutionWidth() // 2, monoRight.getResolutionHeight() // 2
                        rotated_rect.size.width, rotated_rect.size.height = monoRight.getResolutionHeight(), monoRight.getResolutionWidth()
                        rotated_rect.angle = 90
                        manip_depth.initialConfig.setCropRotatedRect(rotated_rect, False)
                        stereo.depth.link(manip_depth.inputImage)
                        manip_depth.out.link(face_det_nn.inputDepth)
                    else:
                        print("OAK-1 detected, app won't display spatial coordiantes")
                        face_det_nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
                    face_det_nn.setConfidenceThreshold(0.5)
                    face_det_nn.setBoundingBoxScaleFactor(0.5)
                    face_det_nn.setBlobPath(blobconverter.from_zoo(name="face-detection-retail-0004", shaves=6))
                    copy_manip = pipeline.create(dai.node.ImageManip)
                    rgbRr.center.x, rgbRr.center.y = cam.getPreviewWidth() // 2, cam.getPreviewHeight() // 2
                    rgbRr.size.width, rgbRr.size.height = cam.getPreviewHeight(), cam.getPreviewWidth()
                    rgbRr.angle = 90
                    copy_manip.initialConfig.setCropRotatedRect(rgbRr, False)
                    copy_manip.setNumFramesPool(15)
                    copy_manip.setMaxOutputFrameSize(3499200)
                    cam.preview.link(copy_manip.inputImage)
                    face_det_manip = pipeline.create(dai.node.ImageManip)
                    face_det_manip.initialConfig.setResize(300, 300)
                    face_det_manip.initialConfig.setFrameType(dai.RawImgFrame.Type.RGB888p)
                    copy_manip.out.link(face_det_manip.inputImage)
                    face_det_manip.out.link(face_det_nn.input)
                    cam_xout = pipeline.create(dai.node.XLinkOut)
                    cam_xout.setStreamName("color")
                    face_det_manip.out.link(cam_xout.input)
                    face_det_xout = pipeline.create(dai.node.XLinkOut)
                    face_det_xout.setStreamName("detection")
                    face_det_nn.out.link(face_det_xout.input)
                    image_manip_script = pipeline.create(dai.node.Script)
                    face_det_nn.out.link(image_manip_script.inputs['face_det_in'])
                    face_det_nn.passthrough.link(image_manip_script.inputs['passthrough'])
                    cam.preview.link(image_manip_script.inputs['preview'])
                    image_manip_script.setScript("""
                    import time
                    msgs = dict()
                    def add_msg(msg, name, seq = None):
                        global msgs
                        if seq is None:
                            seq = msg.getSequenceNum()
                        seq = str(seq)
                        if seq not in msgs:
                            msgs[seq] = dict()
                        msgs[seq][name] = msg
                        if 15 < len(msgs):
                            node.warn(f"Removing first element! len {len(msgs)}")
                            msgs.popitem() # Remove first element
                    def get_msgs():
                        global msgs
                        seq_remove = [] # Arr of sequence numbers to get deleted
                        for seq, syncMsgs in msgs.items():
                            seq_remove.append(seq) # Will get removed from dict if we find synced msgs pair
                            if len(syncMsgs) == 2: # 1 frame, 1 detection
                                for rm in seq_remove:
                                    del msgs[rm]
                                return syncMsgs # Returned synced msgs
                        return None
                    def correct_bb(xmin,ymin,xmax,ymax):
                        if xmin < 0: xmin = 0.001
                        if ymin < 0: ymin = 0.001
                        if xmax > 1: xmax = 0.999
                        if ymax > 1: ymax = 0.999
                        return [xmin,ymin,xmax,ymax]
                    while True:
                        time.sleep(0.001) # Avoid lazy looping
                        preview = node.io['preview'].tryGet()
                        if preview is not None:
                            add_msg(preview, 'preview')
                        face_dets = node.io['face_det_in'].tryGet()
                        if face_dets is not None:
                            passthrough = node.io['passthrough'].get()
                            seq = passthrough.getSequenceNum()
                            add_msg(face_dets, 'dets', seq)
                        sync_msgs = get_msgs()
                        if sync_msgs is not None:
                            img = sync_msgs['preview']
                            dets = sync_msgs['dets']
                            for i, det in enumerate(dets.detections):
                                cfg = ImageManipConfig()
                                bb = correct_bb(det.xmin-0.03, det.ymin-0.03, det.xmax+0.03, det.ymax+0.03)
                                cfg.setCropRect(*bb)
                                cfg.setResize(60, 60)
                                cfg.setKeepAspectRatio(False)
                                node.io['manip_cfg'].send(cfg)
                                node.io['manip_img'].send(img)
                    """)
                    recognition_manip = pipeline.create(dai.node.ImageManip)
                    recognition_manip.initialConfig.setResize(60, 60)
                    recognition_manip.setWaitForConfigInput(True)
                    image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
                    image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)
                    print("Creating recognition Neural Network...")
                    recognition_nn = pipeline.create(dai.node.NeuralNetwork)
                    recognition_nn.setBlobPath(blobconverter.from_zoo(name="head-pose-estimation-adas-0001", shaves=6))
                    recognition_manip.out.link(recognition_nn.input)
                    recognition_xout = pipeline.create(dai.node.XLinkOut)
                    recognition_xout.setStreamName("recognition")
                    xoutDepth = pipeline.create(dai.node.XLinkOut)
                    xoutDepth.setStreamName("depth")
                    face_det_nn.passthroughDepth.link(xoutDepth.input)
                    recognition_nn.out.link(recognition_xout.input)
                    return pipeline
                with dai.Device() as device:
                    stereo = 1 < len(device.getConnectedCameras())
                    device.startPipeline(create_pipeline(stereo))
                    sync = TwoStageHostSeqSync()
                    queues = {}
                    for name in ["color", "detection", "recognition", "depth"]:
                        queues[name] = device.getOutputQueue(name)
                    depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False)
                    while True:
                        depth = depthQueue.get()
                        for name, q in queues.items():
                            if q.has():
                                sync.add_msg(q.get(), name)
                        msgs = sync.get_msgs()
                        depthFrame = depth.getFrame()  # depthFrame values are in millimeters
                        depth_downscaled = depthFrame[::4]
                        if np.all(depth_downscaled == 0):
                            min_depth = 0  # Set a default minimum depth value when all elements are zero
                        else:
                            min_depth = np.percentile(depth_downscaled[depth_downscaled != 0], 1)
                        max_depth = np.percentile(depth_downscaled, 99)
                        depthFrameColor = np.interp(depthFrame, (min_depth, max_depth), (0, 255)).astype(np.uint8)
                        depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_TURBO)
                        if msgs is not None:
                            frame = msgs["color"].getCvFrame()
                            detections = msgs["detection"].detections
                            recognitions = msgs["recognition"]
                            for i, detection in enumerate(detections):
                                bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
                                roiData = detection.boundingBoxMapping
                                roi = roiData.roi
                                depthroi = roi.denormalize(depthFrameColor.shape[1], depthFrameColor.shape[0])
                                depthtopLeft = depthroi.topLeft()
                                depthbottomRight = depthroi.bottomRight()
                                depthxmin = int(depthtopLeft.x)
                                depthymin = int(depthtopLeft.y)
                                depthxmax = int(depthbottomRight.x)
                                depthymax = int(depthbottomRight.y)
                                cv2.rectangle(depthFrameColor, (depthxmin, depthymin), (depthxmax, depthymax),  (255, 255, 255), 1)
                                roi = roi.denormalize(frame.shape[1], frame.shape[0])   # Normalize bounding box
                                topLeft = roi.topLeft()
                                bottomRight = roi.bottomRight()
                                xmin = int(topLeft.x)
                                ymin = int(topLeft.y)
                                xmax = int(bottomRight.x)
                                ymax = int(bottomRight.y)
                                rec = recognitions[i]
                                yaw = rec.getLayerFp16('angle_y_fc')[0]
                                pitch = rec.getLayerFp16('angle_p_fc')[0]
                                roll = rec.getLayerFp16('angle_r_fc')[0]
                                decode_pose(yaw, pitch, roll, bbox, frame)
                                cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
                                cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 0), 2)
                                y = (bbox[1] + bbox[3]) // 2
                                if stereo:
                                    coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z/1000)
                                    cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0, 0, 0), 8)
                                    cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (255, 255, 255), 2)
                            cv2.imshow("Camera", frame)
                            cv2.imshow("depth", depthFrameColor)
                        if cv2.waitKey(1) == ord('q'):
                            break`

                erik
                Yes. After rotating the RGB image and depth map by 90deg, I wanted to recognize the depth data of the face, but after visualizing the depth map and box, I found that the box was not on the face, but in a lower position. And the depth map doesn't seem to match the RGB map, with a smaller viewing angle.
                Thanks

                Hi erik
                I may not have explained the problem I encountered clearly. My goal is to rotate the camera clockwise by 90 degrees and install it to detect the position data (xyz) of the face and the posture angle data (RPY) of the head.
                For RGB images and depth maps, I rotated them separately using ImageManip. However, after visualizing bbox, it was found that the ROI area was not on the face.
                here is the mre
                Thanks in advance!

                Hi @walawala111
                I think this might be an issue of imageManip not passing the rotation information to the spatialLocationCalculator.

                Would have to check that with the team.

                Thanks,
                Jaka

                  6 days later

                  @walawala111 200 lines of code is not an MRE. Please distil it down to minimal repro example and we can take a look into it.