• set up

erik

this code i tried for yolov8 but that calculation part didn't understand( i trained it with 416 , 416 size)

  • erik replied to this.

    from pathlib import Path

    import numpy as np

    import cv2

    import depthai as dai

    import time

    def preproc(image, input_size, mean, std, swap=(2, 0, 1)):

    if len(image.shape) == 3:

    padded_img = np.ones((input_size[0], input_size[1], 3)) * 114.0

    else:

    padded_img = np.ones(input_size) * 114.0

    img = np.array(image)

    r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])

    # print(len(float r))

    resized_img = cv2.resize(

    img,

    (int(img.shape [1] * r), int(img.shape[0] * r)),

    interpolation=cv2.INTER_LINEAR,

    ).astype(np.float32)

    padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img

    padded_img = padded_img[:, :, ::-1]

    padded_img /= 255.0

    if mean is not None:

    padded_img -= mean

    if std is not None:

    padded_img /= std

    padded_img = padded_img.transpose(swap)

    padded_img = np.ascontiguousarray(padded_img, dtype=np.float16)

    #print(padded_img)

    return padded_img, r

    def nms(boxes, scores, nms_thr):

    """Single class NMS implemented in Numpy."""

    x1 = boxes[:, 0]

    y1 = boxes[:, 1]

    x2 = boxes[:, 2]

    y2 = boxes[:, 3]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)

    order = scores.argsort()[::-1]

    keep = []

    while order.size > 0:

    i = order[0]

    keep.append(i)

    xx1 = np.maximum(x1, x1[order[1:]])

    yy1 = np.maximum(y1, y1[order[1:]])

    xx2 = np.minimum(x2, x2[order[1:]])

    yy2 = np.minimum(y2, y2[order[1:]])

    w = np.maximum(0.0, xx2 - xx1 + 1)

    h = np.maximum(0.0, yy2 - yy1 + 1)

    inter = w * h

    ovr = inter / (areas + areas[order[1:]] - inter)

    inds = np.where(ovr <= nms_thr)[0]

    order = order[inds + 1]

    return keep

    def multiclass_nms(boxes, scores, nms_thr, score_thr):

    """Multiclass NMS implemented in Numpy"""

    final_dets = []

    num_classes = scores.shape[1]

    for cls_ind in range(num_classes):

    cls_scores = scores[:, cls_ind]

    valid_score_mask = cls_scores > score_thr

    if valid_score_mask.sum() == 0:

    continue

    else:

    valid_scores = cls_scores[valid_score_mask]

    valid_boxes = boxes[valid_score_mask]

    keep = nms(valid_boxes, valid_scores, nms_thr)

    if len(keep) > 0:

    cls_inds = np.ones((len(keep), 1)) * cls_ind

    dets = np.concatenate(

    [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1

    )

    final_dets.append(dets)

    if len(final_dets) == 0:

    return None

    return np.concatenate(final_dets, 0)

    def demo_postprocess(outputs, img_size, p6=False):

    grids = []

    expanded_strides = []

    if not p6:

    strides = [8, 16, 32]

    else:

    strides = [8, 16, 32, 64]

    hsizes = [img_size[0] // stride for stride in strides]

    wsizes = [img_size[1] // stride for stride in strides]

    for hsize, wsize, stride in zip(hsizes, wsizes, strides):

    xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))

    grid = np.stack((xv, yv), 2).reshape(1, -1, 2)

    grids.append(grid)

    shape = grid.shape[:2]

    expanded_strides.append(np.full((*shape, 1), stride))

    grids = np.concatenate(grids, 1)

    expanded_strides = np.concatenate(expanded_strides, 1)

    outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides

    outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides

    return outputs

    syncNN = False

    SHAPE = 416

    labelMap = ["face"]

    p = dai.Pipeline()

    p.setOpenVINOVersion(dai.OpenVINO.VERSION_2022_1)

    class FPSHandler:

    def init(self, cap=None):

    self.timestamp = time.time()

    self.start = time.time()

    self.frame_cnt = 0

    def next_iter(self):

    self.timestamp = time.time()

    self.frame_cnt += 1

    def fps(self):

    return self.frame_cnt / (self.timestamp - self.start)

    camera = p.create(dai.node.ColorCamera)

    camera.setPreviewSize(SHAPE, SHAPE)

    camera.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)

    camera.setInterleaved(False)

    camera.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)

    nn = p.create(dai.node.NeuralNetwork)

    #nn.setBlobPath(str(Path("yolov8_openvino_blob2022.1_6shave.blob").resolve().absolute()))

    nn.setBlobPath(str(Path("1yolov8_openvino_blob2022.1_6shave.blob").resolve().absolute()))

    nn.setNumInferenceThreads(2)

    nn.input.setBlocking(True)

    # Send camera frames to the host

    camera_xout = p.create(dai.node.XLinkOut)

    camera_xout.setStreamName("camera")

    camera.preview.link(camera_xout.input)

    # Send converted frames from the host to the NN

    nn_xin = p.create(dai.node.XLinkIn)

    nn_xin.setStreamName("nnInput")

    nn_xin.out.link(nn.input)

    # Send bounding boxes from the NN to the host via XLink

    nn_xout = p.create(dai.node.XLinkOut)

    nn_xout.setStreamName("nn")

    nn.out.link(nn_xout.input)

    # Pipeline is defined, now we can connect to the device

    with dai.Device(p) as device:

    qCamera = device.getOutputQueue(name="camera", maxSize=4, blocking=False)

    qNnInput = device.getInputQueue("nnInput", maxSize=4, blocking=False)

    qNn = device.getOutputQueue(name="nn", maxSize=4, blocking=True)

    fps = FPSHandler()

    while True:

    inRgb = qCamera.get()

    frame = inRgb.getCvFrame()

    # Set these according to your dataset

    mean = (0.485, 0.456, 0.406)

    std = (0.229, 0.224, 0.225)

    image, ratio = preproc(frame, (SHAPE, SHAPE), mean, std)

    # NOTE: The model expects an FP16 input image, but ImgFrame accepts a list of ints only. I work around this by

    # spreading the FP16 across two ints

    image = list(image.tobytes())

    dai_frame = dai.ImgFrame()

    dai_frame.setHeight(SHAPE)

    dai_frame.setWidth(SHAPE)

    dai_frame.setData(image)

    qNnInput.send(dai_frame)

    if syncNN:

    in_nn = qNn.get()

    else:

    in_nn = qNn.tryGet()

    if in_nn is not None:

    fps.next_iter()

    cv2.putText(frame, "Fps: {:.2f}".format(fps.fps()), (2, SHAPE - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color=(255, 255, 255))

    data = np.array(in_nn.getLayerFp16('output')).reshape(1, 3549, 85)

    # print(len(in_nn.getLayerFp16('output')))

    output_array = in_nn.getLayerFp16('output')

    print("Size of output array:", output_array.size)

    print("Contents of output array:", output_array)

    predictions = demo_postprocess(data, (SHAPE, SHAPE), p6=False)[0]

    boxes = predictions[:, :4]

    scores = predictions[:, 4, None] * predictions[:, 5:]

    boxes_xyxy = np.ones_like(boxes)

    boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.

    boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.

    boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.

    boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.

    dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.3)

    if dets is not None:

    final_boxes = dets[:, :4]

    final_scores, final_cls_inds = dets[:, 4], dets[:, 5]

    for i in range(len(final_boxes)):

    bbox = final_boxes

    score = final_scores

    class_name = labelMap[int(final_cls_inds)]

    if score >= 0.1:

    # Limit the bounding box to 0..SHAPE

    bbox[bbox > SHAPE - 1] = SHAPE - 1

    bbox[bbox < 0] = 0

    xy_min = (int(bbox[0]), int(bbox[1]))

    xy_max = (int(bbox[2]), int(bbox[3]))

    # Display detection's BB, label and confidence on the frame

    cv2.rectangle(frame, xy_min , xy_max, (255, 0, 0), 2)

    cv2.putText(frame, class_name, (xy_min[0] + 10, xy_min[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)

    cv2.putText(frame, f"{int(score * 100)}%", (xy_min[0] + 10, xy_min[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)

    cv2.imshow("rgb", frame)

    if cv2.waitKey(1) == ord('q'):

    break

    this is the code am using for training 🇦

    "!yolo train model=yolov8n.pt data=/home/thasni/Downloads/face_yolov8/data.yaml epochs=20 imgsz=416 batch=32 lr0=0.01 device=0 "

    ]

    },

    {

    [

    "!yolo val model=/home/thasni/jupy_oak/ultralytics/runs/detect/train16/weights/best.pt data=/home/thasni/Downloads/face_yolov8/data.yaml\n",



    "!yolo predict model=/home/thasni/jupy_oak/ultralytics/runs/detect/train16/weights/best.pt source='/home/thasni/jupy_oak/ultralytics/runs/detect/val15/2.jpg'\n"

    ]

    },


    }

    ],

    "!yolo task=detect mode=predict model=/home/thasni/jupy_oak/ultralytics/runs/detect/train16/weights/best.pt show=True conf=0.5 source='/home/thasni/Downloads/face_yolov8/train/images/1.jpg'\n",


    },

    {

    "!cp /home/thasni/jupy_oak/ultralytics/runs/detect/train16/weights/best.pt runs/detect/train/weights/yolov8ntrained.pt"

    "!yolo task=detect mode=export model= /home/thasni/jupy_oak/ultralytics/runs/detect/train16/weights/best.pt format=onnx imgsz=416,416 "

    ]




    error is

    • erik replied to this.

      erik

      https://github.com/luxonis/depthai-experiments/blob/master/gen2-yolo/yolox/main.py - but i didn't get that calculation part and i couldn't able to deploy my blob into it in this code i just changed the path and blob file and version - can you please tell me what calculation and how to do it can you please explain it??

      erik

      erik ,

      1. i tried that link for yolov8 but deploying it in oak d i have only code for v3 and v4 -
      2. the blob which i generated from yolov8 is not working with the code given for tiny yolo.py
      3. so fully confused and we are not able to move further with this camera. can you share any details or code

      • erik replied to this.

        ThasnimolVSam22d007 Step by step tutorial is available in the yolov8_training.ipynb on how to deploy the model. Please provide .pt of the trained yolov8 model so we can repro locally.

          erik

          Hi erik .

          did anyone worked with yolov8 and it got correct?

          yolov8 upto blob generation i can do properly.

          can you give mail id to share pt file, here it is not able to upload (large file)

          • erik replied to this.
            10 days later

            erik

            hi Erik,

            yolov8 is working for me, thanks for your support

            i have one doubt in this object detection , face land-marking and all how you are verifying it is working in camera itself? means full processing happening inside camera board ??

              Hi ThasnimolVSam22d007
              The whole pipeline is executed on the device. You can check that by looking at the resources your PC uses --> it will not jump significantly when running a pipeline. The only thing running on PC are the calls inside the while loop (cv2 displaying and perhaps some additional frame manipulations).

              Thanks,
              Jaka