erik thank you so much for helping me out.

Today, I have trained new model. then I used a new json file. but it didn't work. this error appeared:

y:1.2648584 width:0.057771206 height:-0.26485837 is not a valid rectangle.

[194430105190FE1200] [1.1.2] [31.289] [SpatialDetectionNetwork(8)] [error] ROI x:0.6353549 y:1.2649865 width:0.0572443 height:-0.26498652 is not a valid rectangle.

[194430105190FE1200] [1.1.2] [31.289] [SpatialDetectionNetwork(8)] [error] ROI x:0.030717716 y:1.1823903 width:0.023574337 height:-0.18239033 is not a valid rectangle.

And this is the json file:

thank you again

    jakaskerl Thank you for your answer,

    Yes, I tested my model before the conversion. Actually, I converted the model using this tool: DepthAI Tools (luxonis.com). Then these were all my inputs:

    and I did the same steps as the previous one(which worked successfully)

    erik This code was perfect and worked faster than the "main_api" code. But it couldn't read my new json file properly.

      Hi MhmdBarazi
      To view the spatial coordinates from the main api, you will have to use a spatial neural network instead of the regular one. The same is done in SDK with spatial=True flag.
      SDK likely doesn't work with your model because the parsing is different, that would mean you will need to manually write a callback function to parse the NN results.

      Thanks,
      Jaka

        jakaskerl Hello,

        Can you give me an example code for a manually written spatial callback function?

        Thanks,

        #!/usr/bin/env python3

        from pathlib import Path

        import sys

        import cv2

        import depthai as dai

        import numpy as np

        import time

        import os

        '''

        Spatial detection network demo.

        Performs inference on RGB camera and retrieves spatial location coordinates: x,y,z relative to the center of depth map.

        '''

        # Get argument first

        nnBlobPath = str((os.path.dirname(os.path.abspath("file")) / Path('/home/apakgrup/depthai-python/examples/spatial/best_openvino_2022.1_7shave.blob')).resolve().absolute())

        if len(sys.argv) > 1:

        nnBlobPath = sys.argv[1]

        if not Path(nnBlobPath).exists():

        import sys
        
        raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')

        # MobilenetSSD label texts

        labelMap = ["fire"]

        syncNN = True

        # Create pipeline

        pipeline = dai.Pipeline()

        # Define sources and outputs

        camRgb = pipeline.create(dai.node.ColorCamera)

        spatialDetectionNetwork = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)

        monoLeft = pipeline.create(dai.node.MonoCamera)

        monoRight = pipeline.create(dai.node.MonoCamera)

        stereo = pipeline.create(dai.node.StereoDepth)

        xoutRgb = pipeline.create(dai.node.XLinkOut)

        xoutNN = pipeline.create(dai.node.XLinkOut)

        xoutDepth = pipeline.create(dai.node.XLinkOut)

        xoutRgb.setStreamName("rgb")

        xoutNN.setStreamName("detections")

        xoutDepth.setStreamName("depth")

        # Properties

        camRgb.setPreviewSize(640,640)

        camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)

        camRgb.setInterleaved(False)

        camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)

        monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)

        monoLeft.setCamera("left")

        monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)

        monoRight.setCamera("right")

        # Setting node configs

        stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)

        # Align depth map to the perspective of RGB camera, on which inference is done

        stereo.setDepthAlign(dai.CameraBoardSocket.CAM_A)

        stereo.setSubpixel(True)

        stereo.setOutputSize(monoLeft.getResolutionWidth(), monoLeft.getResolutionHeight())

        spatialDetectionNetwork.setBlobPath(nnBlobPath)

        spatialDetectionNetwork.setConfidenceThreshold(0.5)

        spatialDetectionNetwork.input.setBlocking(False)

        spatialDetectionNetwork.setBoundingBoxScaleFactor(0.5)

        spatialDetectionNetwork.setDepthLowerThreshold(100)

        spatialDetectionNetwork.setDepthUpperThreshold(5000)

        # Linking

        monoLeft.out.link(stereo.left)

        monoRight.out.link(stereo.right)

        camRgb.preview.link(spatialDetectionNetwork.input)

        if syncNN:

        spatialDetectionNetwork.passthrough.link(xoutRgb.input)

        else:

        camRgb.preview.link(xoutRgb.input)

        spatialDetectionNetwork.out.link(xoutNN.input)

        stereo.depth.link(spatialDetectionNetwork.inputDepth)

        spatialDetectionNetwork.passthroughDepth.link(xoutDepth.input)

        # Connect to device and start pipeline

        with dai.Device(pipeline) as device:

        # Output queues will be used to get the rgb frames and nn data from the outputs defined above
        
        previewQueue = device.getOutputQueue(name="rgb", maxSize=4, blocking=False)
        
        detectionNNQueue = device.getOutputQueue(name="detections", maxSize=4, blocking=False)
        
        depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False)
        
        startTime = time.monotonic()
        
        counter = 0
        
        fps = 0
        
        color = (255, 255, 255)
        
        while True:
        
            inPreview = previewQueue.get()
        
            inDet = detectionNNQueue.get()
        
            depth = depthQueue.get()
        
            counter+=1
        
            current_time = time.monotonic()
        
            if (current_time - startTime) > 1 :
        
                fps = counter / (current_time - startTime)
        
                counter = 0
        
                startTime = current_time
        
            frame = inPreview.getCvFrame()
        
            depthFrame = depth.getFrame() # depthFrame values are in millimeters
        
            depth_downscaled = depthFrame[::4]
        
            min_depth = np.percentile(depth_downscaled[depth_downscaled != 0], 1)
        
            max_depth = np.percentile(depth_downscaled, 99)
        
            depthFrameColor = np.interp(depthFrame, (min_depth, max_depth), (0, 255)).astype(np.uint8)
        
            depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_HOT)
        
            detections = inDet.detections
        
            # If the frame is available, draw bounding boxes on it and show the frame
        
            height = frame.shape[0]
        
            width  = frame.shape[1]
        
            for detection in detections:
        
                roiData = detection.boundingBoxMapping
        
                roi = roiData.roi
        
                roi = roi.denormalize(depthFrameColor.shape[1], depthFrameColor.shape[0])
        
                topLeft = roi.topLeft()
        
                bottomRight = roi.bottomRight()
        
                xmin = int(topLeft.x)
        
                ymin = int(topLeft.y)
        
                xmax = int(bottomRight.x)
        
                ymax = int(bottomRight.y)
        
                cv2.rectangle(depthFrameColor, (xmin, ymin), (xmax, ymax), color, 1)
        
                # Denormalize bounding box
        
                x1 = int(detection.xmin \* width)
        
                x2 = int(detection.xmax \* width)
        
                y1 = int(detection.ymin \* height)
        
                y2 = int(detection.ymax \* height)
        
                try:
        
                    label = labelMap[detection.label]
        
                except:
        
                    label = detection.label
        
                cv2.putText(frame, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
        
                cv2.putText(frame, "{:.2f}".format(detection.confidence\*100), (x1 + 10, y1 + 35), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
        
                cv2.putText(frame, f"X: {int(detection.spatialCoordinates.x)} mm", (x1 + 10, y1 + 50), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
        
                cv2.putText(frame, f"Y: {int(detection.spatialCoordinates.y)} mm", (x1 + 10, y1 + 65), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
        
                cv2.putText(frame, f"Z: {int(detection.spatialCoordinates.z)} mm", (x1 + 10, y1 + 80), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
        
                cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), cv2.FONT_HERSHEY_SIMPLEX)
        
            cv2.putText(frame, "NN fps: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, (255,255,255))
        
            cv2.imshow("depth", depthFrameColor)
        
            cv2.imshow("preview", frame)
        
            if cv2.waitKey(1) == ord('q'):
        
                break

        I ran this code from depth-ai examples then the same error appeared. this is my last blob and json file:

        any help please?

        • erik replied to this.

          erik I installed the latest version(https://github.com/luxonis/depthai-python/releases/tag/v2.22.0.0) still give me this error:

          [194430105190FE1200] [1.1.2] [12.735] [XLinkOut(6)] [error] Message has too much metadata (618343B) to serialize. Maximum is 51200B. Dropping message

          [194430105190FE1200] [1.1.2] [13.450] [SpatialDetectionNetwork(1)] [error] ROI x:0.59461975 y:0.67529297 width:0.006866455 height:0 is not a valid rectangle.

          [194430105190FE1200] [1.1.2] [13.450] [SpatialDetectionNetwork(1)] [error] ROI x:0.683197 y:0.78881836 width:0 height:0.012207031 is not a valid rectangle.

          [194430105190FE1200] [1.1.2] [13.453] [SpatialDetectionNetwork(1)] [error] ROI x:0.6419296 y:0.7573242 width:0.010299683 height:0 is not a valid rectangle.

          [194430105190FE1200] [1.1.2] [13.456] [SpatialDetectionNetwork(1)] [error] ROI x:0.5257492 y:0.5644531 width:0.031723022 height:0 is not a valid rectangle.

          [194430105190FE1200] [1.1.2] [13.457] [SpatialDetectionNetwork(1)] [error] ROI x:0.500618 y:0.54003906 width:0.0045318604 height:0 is not a valid rectangle.

          [194430105190FE1200] [1.1.2] [13.457] [SpatialDetectionNetwork(1)] [error] ROI x:0.5377655 y:0.49804688 width:0.0063171387 height:0 is not a valid rectangle.

          The weirdest part of this is that the first model is still working. But after that nothing worked

            jakaskerl Hello,

            I installed this on my raspberry pi:

            apakgrup@raspberrypi:~ $ git clone https://github.com/luxonis/depthai.git

            Right now, these are the installed versions :

            depthai==2.22.0.0

            depthai-pipeline-graph==0.0.5

            depthai-sdk==1.12.1

            Still not working…

            Thanks,

            @MhmdBarazi what script and arguments are you using? It might be a problem if you have best.xml / best.bin, as if that's the case, it will use already compiled model (as it only checks name), instead of compiling a new one. So i'd suggest changing the names of xml/bin (and update to new names inside your .json)

              erik Hello dear,

              Thank you so much it worked, but unfortunately there is a new problem:

              the window just shows an image, the image that you are seeing know doesn't change. there is no video no motion.

              Thanks,

                Hi MhmdBarazi
                In the code below, you are using a callback. Could you recheck that it works correctly. Maybe try removing it to see if it fixes the problem.

                Thanks,
                Jaka

                Hello dear@"jakaskerl"#p11449,

                I tried from a different device, with and without callback. Still the same problem

                Update, There is a non-continuous motion in the window(sometimes it freezes) as well as it is too slow.

                  Hi MhmdBarazi
                  Upon testing the model locally, I believe it's to computationally expensive. Just as you have experienced above, I am also only getting about 0.5 FPS. This is not the case if I'm using other models.

                  Thoughts?
                  Jaka