Hi MhmdBarazi ,
Yes, you can:

from depthai_sdk import OakCamera, ArgsParser
import argparse
import depthai as dai

def a(packet):
    for det in packet.detections:
        spatials = det.img_detection.spatialCoordinates
        print(spatials.x, spatials.y, spatials.z)

# parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("-conf", "--config", help="Trained YOLO json config path", default='model/yolo.json', type=str)
args = ArgsParser.parseArgs(parser)

with OakCamera(args=args) as oak:
    stereo = oak.create_stereo(fps=8)
    color = oak.create_camera('color', fps=8)
    nn = oak.create_nn(args['config'], color, nn_type='yolo', spatial=stereo)
    oak.visualize(nn, fps=True, scale=2/3)
    oak.callback(nn.out.passthrough, a)
    oak.start(blocking=True)

    erik thank you so much for helping me out.

    Today, I have trained new model. then I used a new json file. but it didn't work. this error appeared:

    y:1.2648584 width:0.057771206 height:-0.26485837 is not a valid rectangle.

    [194430105190FE1200] [1.1.2] [31.289] [SpatialDetectionNetwork(8)] [error] ROI x:0.6353549 y:1.2649865 width:0.0572443 height:-0.26498652 is not a valid rectangle.

    [194430105190FE1200] [1.1.2] [31.289] [SpatialDetectionNetwork(8)] [error] ROI x:0.030717716 y:1.1823903 width:0.023574337 height:-0.18239033 is not a valid rectangle.

    And this is the json file:

    thank you again

      jakaskerl Thank you for your answer,

      Yes, I tested my model before the conversion. Actually, I converted the model using this tool: DepthAI Tools (luxonis.com). Then these were all my inputs:

      and I did the same steps as the previous one(which worked successfully)

      erik This code was perfect and worked faster than the "main_api" code. But it couldn't read my new json file properly.

        Hi MhmdBarazi
        To view the spatial coordinates from the main api, you will have to use a spatial neural network instead of the regular one. The same is done in SDK with spatial=True flag.
        SDK likely doesn't work with your model because the parsing is different, that would mean you will need to manually write a callback function to parse the NN results.

        Thanks,
        Jaka

          jakaskerl Hello,

          Can you give me an example code for a manually written spatial callback function?

          Thanks,

          #!/usr/bin/env python3

          from pathlib import Path

          import sys

          import cv2

          import depthai as dai

          import numpy as np

          import time

          import os

          '''

          Spatial detection network demo.

          Performs inference on RGB camera and retrieves spatial location coordinates: x,y,z relative to the center of depth map.

          '''

          # Get argument first

          nnBlobPath = str((os.path.dirname(os.path.abspath("file")) / Path('/home/apakgrup/depthai-python/examples/spatial/best_openvino_2022.1_7shave.blob')).resolve().absolute())

          if len(sys.argv) > 1:

          nnBlobPath = sys.argv[1]

          if not Path(nnBlobPath).exists():

          import sys
          
          raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')

          # MobilenetSSD label texts

          labelMap = ["fire"]

          syncNN = True

          # Create pipeline

          pipeline = dai.Pipeline()

          # Define sources and outputs

          camRgb = pipeline.create(dai.node.ColorCamera)

          spatialDetectionNetwork = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)

          monoLeft = pipeline.create(dai.node.MonoCamera)

          monoRight = pipeline.create(dai.node.MonoCamera)

          stereo = pipeline.create(dai.node.StereoDepth)

          xoutRgb = pipeline.create(dai.node.XLinkOut)

          xoutNN = pipeline.create(dai.node.XLinkOut)

          xoutDepth = pipeline.create(dai.node.XLinkOut)

          xoutRgb.setStreamName("rgb")

          xoutNN.setStreamName("detections")

          xoutDepth.setStreamName("depth")

          # Properties

          camRgb.setPreviewSize(640,640)

          camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)

          camRgb.setInterleaved(False)

          camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)

          monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)

          monoLeft.setCamera("left")

          monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)

          monoRight.setCamera("right")

          # Setting node configs

          stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)

          # Align depth map to the perspective of RGB camera, on which inference is done

          stereo.setDepthAlign(dai.CameraBoardSocket.CAM_A)

          stereo.setSubpixel(True)

          stereo.setOutputSize(monoLeft.getResolutionWidth(), monoLeft.getResolutionHeight())

          spatialDetectionNetwork.setBlobPath(nnBlobPath)

          spatialDetectionNetwork.setConfidenceThreshold(0.5)

          spatialDetectionNetwork.input.setBlocking(False)

          spatialDetectionNetwork.setBoundingBoxScaleFactor(0.5)

          spatialDetectionNetwork.setDepthLowerThreshold(100)

          spatialDetectionNetwork.setDepthUpperThreshold(5000)

          # Linking

          monoLeft.out.link(stereo.left)

          monoRight.out.link(stereo.right)

          camRgb.preview.link(spatialDetectionNetwork.input)

          if syncNN:

          spatialDetectionNetwork.passthrough.link(xoutRgb.input)

          else:

          camRgb.preview.link(xoutRgb.input)

          spatialDetectionNetwork.out.link(xoutNN.input)

          stereo.depth.link(spatialDetectionNetwork.inputDepth)

          spatialDetectionNetwork.passthroughDepth.link(xoutDepth.input)

          # Connect to device and start pipeline

          with dai.Device(pipeline) as device:

          # Output queues will be used to get the rgb frames and nn data from the outputs defined above
          
          previewQueue = device.getOutputQueue(name="rgb", maxSize=4, blocking=False)
          
          detectionNNQueue = device.getOutputQueue(name="detections", maxSize=4, blocking=False)
          
          depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False)
          
          startTime = time.monotonic()
          
          counter = 0
          
          fps = 0
          
          color = (255, 255, 255)
          
          while True:
          
              inPreview = previewQueue.get()
          
              inDet = detectionNNQueue.get()
          
              depth = depthQueue.get()
          
              counter+=1
          
              current_time = time.monotonic()
          
              if (current_time - startTime) > 1 :
          
                  fps = counter / (current_time - startTime)
          
                  counter = 0
          
                  startTime = current_time
          
              frame = inPreview.getCvFrame()
          
              depthFrame = depth.getFrame() # depthFrame values are in millimeters
          
              depth_downscaled = depthFrame[::4]
          
              min_depth = np.percentile(depth_downscaled[depth_downscaled != 0], 1)
          
              max_depth = np.percentile(depth_downscaled, 99)
          
              depthFrameColor = np.interp(depthFrame, (min_depth, max_depth), (0, 255)).astype(np.uint8)
          
              depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_HOT)
          
              detections = inDet.detections
          
              # If the frame is available, draw bounding boxes on it and show the frame
          
              height = frame.shape[0]
          
              width  = frame.shape[1]
          
              for detection in detections:
          
                  roiData = detection.boundingBoxMapping
          
                  roi = roiData.roi
          
                  roi = roi.denormalize(depthFrameColor.shape[1], depthFrameColor.shape[0])
          
                  topLeft = roi.topLeft()
          
                  bottomRight = roi.bottomRight()
          
                  xmin = int(topLeft.x)
          
                  ymin = int(topLeft.y)
          
                  xmax = int(bottomRight.x)
          
                  ymax = int(bottomRight.y)
          
                  cv2.rectangle(depthFrameColor, (xmin, ymin), (xmax, ymax), color, 1)
          
                  # Denormalize bounding box
          
                  x1 = int(detection.xmin \* width)
          
                  x2 = int(detection.xmax \* width)
          
                  y1 = int(detection.ymin \* height)
          
                  y2 = int(detection.ymax \* height)
          
                  try:
          
                      label = labelMap[detection.label]
          
                  except:
          
                      label = detection.label
          
                  cv2.putText(frame, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
          
                  cv2.putText(frame, "{:.2f}".format(detection.confidence\*100), (x1 + 10, y1 + 35), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
          
                  cv2.putText(frame, f"X: {int(detection.spatialCoordinates.x)} mm", (x1 + 10, y1 + 50), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
          
                  cv2.putText(frame, f"Y: {int(detection.spatialCoordinates.y)} mm", (x1 + 10, y1 + 65), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
          
                  cv2.putText(frame, f"Z: {int(detection.spatialCoordinates.z)} mm", (x1 + 10, y1 + 80), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
          
                  cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), cv2.FONT_HERSHEY_SIMPLEX)
          
              cv2.putText(frame, "NN fps: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, (255,255,255))
          
              cv2.imshow("depth", depthFrameColor)
          
              cv2.imshow("preview", frame)
          
              if cv2.waitKey(1) == ord('q'):
          
                  break

          I ran this code from depth-ai examples then the same error appeared. this is my last blob and json file:

          any help please?

          • erik replied to this.

            erik I installed the latest version(https://github.com/luxonis/depthai-python/releases/tag/v2.22.0.0) still give me this error:

            [194430105190FE1200] [1.1.2] [12.735] [XLinkOut(6)] [error] Message has too much metadata (618343B) to serialize. Maximum is 51200B. Dropping message

            [194430105190FE1200] [1.1.2] [13.450] [SpatialDetectionNetwork(1)] [error] ROI x:0.59461975 y:0.67529297 width:0.006866455 height:0 is not a valid rectangle.

            [194430105190FE1200] [1.1.2] [13.450] [SpatialDetectionNetwork(1)] [error] ROI x:0.683197 y:0.78881836 width:0 height:0.012207031 is not a valid rectangle.

            [194430105190FE1200] [1.1.2] [13.453] [SpatialDetectionNetwork(1)] [error] ROI x:0.6419296 y:0.7573242 width:0.010299683 height:0 is not a valid rectangle.

            [194430105190FE1200] [1.1.2] [13.456] [SpatialDetectionNetwork(1)] [error] ROI x:0.5257492 y:0.5644531 width:0.031723022 height:0 is not a valid rectangle.

            [194430105190FE1200] [1.1.2] [13.457] [SpatialDetectionNetwork(1)] [error] ROI x:0.500618 y:0.54003906 width:0.0045318604 height:0 is not a valid rectangle.

            [194430105190FE1200] [1.1.2] [13.457] [SpatialDetectionNetwork(1)] [error] ROI x:0.5377655 y:0.49804688 width:0.0063171387 height:0 is not a valid rectangle.

            The weirdest part of this is that the first model is still working. But after that nothing worked

              jakaskerl Hello,

              I installed this on my raspberry pi:

              apakgrup@raspberrypi:~ $ git clone https://github.com/luxonis/depthai.git

              Right now, these are the installed versions :

              depthai==2.22.0.0

              depthai-pipeline-graph==0.0.5

              depthai-sdk==1.12.1

              Still not workingโ€ฆ

              Thanks,

              @MhmdBarazi what script and arguments are you using? It might be a problem if you have best.xml / best.bin, as if that's the case, it will use already compiled model (as it only checks name), instead of compiling a new one. So i'd suggest changing the names of xml/bin (and update to new names inside your .json)

                erik Hello dear,

                Thank you so much it worked, but unfortunately there is a new problem:

                the window just shows an image, the image that you are seeing know doesn't change. there is no video no motion.

                Thanks,

                  Hi MhmdBarazi
                  In the code below, you are using a callback. Could you recheck that it works correctly. Maybe try removing it to see if it fixes the problem.

                  Thanks,
                  Jaka

                  Hello dear@"jakaskerl"#p11449,

                  I tried from a different device, with and without callback. Still the same problem

                  Update, There is a non-continuous motion in the window(sometimes it freezes) as well as it is too slow.