jakaskerl Hello,

I changed the file name from best_openvino_2022.1_6shave.blob to best_openvino_2021.4_6shave.blob. Then I changed the whole line of opening path like this:

nnBlobPath = str((os.path.dirname(os.path.abspath("file")) / Path('/home/apakgrup/depthai-python/examples/spatial/best_openvino_2021.4_6shave.blob')).resolve().absolute())

Unfortunately, still not work. But the error has changed like this:

[194430105190FE1200] [1.1.2] [3.951] [SpatialDetectionNetwork(1)] [error] ROI x:0.66726685 y:0.8051758 width:0.034057617 height:0 is not a valid rectangle.

[194430105190FE1200] [1.1.2] [3.952] [SpatialDetectionNetwork(1)] [error] ROI x:0.716774 y:0.9003906 width:0.03199768 height:0 is not a valid rectangle.

[194430105190FE1200] [1.1.2] [4.149] [XLinkOut(6)] [error] Message has too much metadata (665313B) to serialize. Maximum is 51200B. Dropping message

[194430105190FE1200] [1.1.2] [4.472] [system] [critical] Fatal error. Please report to developers. Log: 'TlsfMemoryManager' '255'

Traceback (most recent call last):

File "<string>", line 103, in <module>

RuntimeError: Communication exception - possible device error/misconfiguration. Original message 'Couldn't read data from stream: 'detections' (X_LINK_ERROR)'

Any help ,please jakaskerl @erik

Thanks

  • erik replied to this.

    MhmdBarazi What you shared above (result(1).zip) works for me.
    python3 main.py --config barazi/barazi.json (from depthai-experiments/gen2-yolo/device-decoding), I just removed the Spatial=True inside the create_nn, to improve the FPS.

      erik thank you so much, But the problem is that I need spatial data(x,y,z) actually that is why I choose OAK device because I can locate the fire. Can I merge between fire detection and spatial data?

      Yes, you can. I am using latest develop version of depthai-sdk, and have limited FPS to 8:

      from depthai_sdk import OakCamera, ArgsParser
      import argparse
      
      def a(packet):
          print(packet.detections)
      # parse arguments
      parser = argparse.ArgumentParser()
      parser.add_argument("-conf", "--config", help="Trained YOLO json config path", default='model/yolo.json', type=str)
      args = ArgsParser.parseArgs(parser)
      
      with OakCamera(args=args) as oak:
          stereo = oak.stereo(fps=8)
          color = oak.create_camera('color', fps=8)
          nn = oak.create_nn(args['config'], color, nn_type='yolo', spatial=stereo)
          oak.visualize(nn, fps=True, scale=2/3)
          oak.callback(nn.out.passthrough, a)
          oak.start(blocking=True)

        erik It worked, thank you so much, just last thing, you have used a different code, the code I have uploaded doesn't work at all it means. Does it? I want to get this spatial data to use it in another code. That is why am asking. thank you so much for helping me out.

        • erik replied to this.

          MhmdBarazi I don't now, the code you used wasn't MRE and was badly formatted, so I haven't dug into it trying to debug it.

            erik Thank you, can I get spatial detection data in a string format?

            • erik replied to this.

              Hi MhmdBarazi ,
              Yes, you can:

              from depthai_sdk import OakCamera, ArgsParser
              import argparse
              import depthai as dai
              
              def a(packet):
                  for det in packet.detections:
                      spatials = det.img_detection.spatialCoordinates
                      print(spatials.x, spatials.y, spatials.z)
              
              # parse arguments
              parser = argparse.ArgumentParser()
              parser.add_argument("-conf", "--config", help="Trained YOLO json config path", default='model/yolo.json', type=str)
              args = ArgsParser.parseArgs(parser)
              
              with OakCamera(args=args) as oak:
                  stereo = oak.create_stereo(fps=8)
                  color = oak.create_camera('color', fps=8)
                  nn = oak.create_nn(args['config'], color, nn_type='yolo', spatial=stereo)
                  oak.visualize(nn, fps=True, scale=2/3)
                  oak.callback(nn.out.passthrough, a)
                  oak.start(blocking=True)

                erik thank you so much for helping me out.

                Today, I have trained new model. then I used a new json file. but it didn't work. this error appeared:

                y:1.2648584 width:0.057771206 height:-0.26485837 is not a valid rectangle.

                [194430105190FE1200] [1.1.2] [31.289] [SpatialDetectionNetwork(8)] [error] ROI x:0.6353549 y:1.2649865 width:0.0572443 height:-0.26498652 is not a valid rectangle.

                [194430105190FE1200] [1.1.2] [31.289] [SpatialDetectionNetwork(8)] [error] ROI x:0.030717716 y:1.1823903 width:0.023574337 height:-0.18239033 is not a valid rectangle.

                And this is the json file:

                thank you again

                  jakaskerl Thank you for your answer,

                  Yes, I tested my model before the conversion. Actually, I converted the model using this tool: DepthAI Tools (luxonis.com). Then these were all my inputs:

                  and I did the same steps as the previous one(which worked successfully)

                  erik This code was perfect and worked faster than the "main_api" code. But it couldn't read my new json file properly.

                    Hi MhmdBarazi
                    To view the spatial coordinates from the main api, you will have to use a spatial neural network instead of the regular one. The same is done in SDK with spatial=True flag.
                    SDK likely doesn't work with your model because the parsing is different, that would mean you will need to manually write a callback function to parse the NN results.

                    Thanks,
                    Jaka

                      jakaskerl Hello,

                      Can you give me an example code for a manually written spatial callback function?

                      Thanks,

                      #!/usr/bin/env python3

                      from pathlib import Path

                      import sys

                      import cv2

                      import depthai as dai

                      import numpy as np

                      import time

                      import os

                      '''

                      Spatial detection network demo.

                      Performs inference on RGB camera and retrieves spatial location coordinates: x,y,z relative to the center of depth map.

                      '''

                      # Get argument first

                      nnBlobPath = str((os.path.dirname(os.path.abspath("file")) / Path('/home/apakgrup/depthai-python/examples/spatial/best_openvino_2022.1_7shave.blob')).resolve().absolute())

                      if len(sys.argv) > 1:

                      nnBlobPath = sys.argv[1]

                      if not Path(nnBlobPath).exists():

                      import sys
                      
                      raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')

                      # MobilenetSSD label texts

                      labelMap = ["fire"]

                      syncNN = True

                      # Create pipeline

                      pipeline = dai.Pipeline()

                      # Define sources and outputs

                      camRgb = pipeline.create(dai.node.ColorCamera)

                      spatialDetectionNetwork = pipeline.create(dai.node.MobileNetSpatialDetectionNetwork)

                      monoLeft = pipeline.create(dai.node.MonoCamera)

                      monoRight = pipeline.create(dai.node.MonoCamera)

                      stereo = pipeline.create(dai.node.StereoDepth)

                      xoutRgb = pipeline.create(dai.node.XLinkOut)

                      xoutNN = pipeline.create(dai.node.XLinkOut)

                      xoutDepth = pipeline.create(dai.node.XLinkOut)

                      xoutRgb.setStreamName("rgb")

                      xoutNN.setStreamName("detections")

                      xoutDepth.setStreamName("depth")

                      # Properties

                      camRgb.setPreviewSize(640,640)

                      camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)

                      camRgb.setInterleaved(False)

                      camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)

                      monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)

                      monoLeft.setCamera("left")

                      monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)

                      monoRight.setCamera("right")

                      # Setting node configs

                      stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)

                      # Align depth map to the perspective of RGB camera, on which inference is done

                      stereo.setDepthAlign(dai.CameraBoardSocket.CAM_A)

                      stereo.setSubpixel(True)

                      stereo.setOutputSize(monoLeft.getResolutionWidth(), monoLeft.getResolutionHeight())

                      spatialDetectionNetwork.setBlobPath(nnBlobPath)

                      spatialDetectionNetwork.setConfidenceThreshold(0.5)

                      spatialDetectionNetwork.input.setBlocking(False)

                      spatialDetectionNetwork.setBoundingBoxScaleFactor(0.5)

                      spatialDetectionNetwork.setDepthLowerThreshold(100)

                      spatialDetectionNetwork.setDepthUpperThreshold(5000)

                      # Linking

                      monoLeft.out.link(stereo.left)

                      monoRight.out.link(stereo.right)

                      camRgb.preview.link(spatialDetectionNetwork.input)

                      if syncNN:

                      spatialDetectionNetwork.passthrough.link(xoutRgb.input)

                      else:

                      camRgb.preview.link(xoutRgb.input)

                      spatialDetectionNetwork.out.link(xoutNN.input)

                      stereo.depth.link(spatialDetectionNetwork.inputDepth)

                      spatialDetectionNetwork.passthroughDepth.link(xoutDepth.input)

                      # Connect to device and start pipeline

                      with dai.Device(pipeline) as device:

                      # Output queues will be used to get the rgb frames and nn data from the outputs defined above
                      
                      previewQueue = device.getOutputQueue(name="rgb", maxSize=4, blocking=False)
                      
                      detectionNNQueue = device.getOutputQueue(name="detections", maxSize=4, blocking=False)
                      
                      depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False)
                      
                      startTime = time.monotonic()
                      
                      counter = 0
                      
                      fps = 0
                      
                      color = (255, 255, 255)
                      
                      while True:
                      
                          inPreview = previewQueue.get()
                      
                          inDet = detectionNNQueue.get()
                      
                          depth = depthQueue.get()
                      
                          counter+=1
                      
                          current_time = time.monotonic()
                      
                          if (current_time - startTime) > 1 :
                      
                              fps = counter / (current_time - startTime)
                      
                              counter = 0
                      
                              startTime = current_time
                      
                          frame = inPreview.getCvFrame()
                      
                          depthFrame = depth.getFrame() # depthFrame values are in millimeters
                      
                          depth_downscaled = depthFrame[::4]
                      
                          min_depth = np.percentile(depth_downscaled[depth_downscaled != 0], 1)
                      
                          max_depth = np.percentile(depth_downscaled, 99)
                      
                          depthFrameColor = np.interp(depthFrame, (min_depth, max_depth), (0, 255)).astype(np.uint8)
                      
                          depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_HOT)
                      
                          detections = inDet.detections
                      
                          # If the frame is available, draw bounding boxes on it and show the frame
                      
                          height = frame.shape[0]
                      
                          width  = frame.shape[1]
                      
                          for detection in detections:
                      
                              roiData = detection.boundingBoxMapping
                      
                              roi = roiData.roi
                      
                              roi = roi.denormalize(depthFrameColor.shape[1], depthFrameColor.shape[0])
                      
                              topLeft = roi.topLeft()
                      
                              bottomRight = roi.bottomRight()
                      
                              xmin = int(topLeft.x)
                      
                              ymin = int(topLeft.y)
                      
                              xmax = int(bottomRight.x)
                      
                              ymax = int(bottomRight.y)
                      
                              cv2.rectangle(depthFrameColor, (xmin, ymin), (xmax, ymax), color, 1)
                      
                              # Denormalize bounding box
                      
                              x1 = int(detection.xmin \* width)
                      
                              x2 = int(detection.xmax \* width)
                      
                              y1 = int(detection.ymin \* height)
                      
                              y2 = int(detection.ymax \* height)
                      
                              try:
                      
                                  label = labelMap[detection.label]
                      
                              except:
                      
                                  label = detection.label
                      
                              cv2.putText(frame, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
                      
                              cv2.putText(frame, "{:.2f}".format(detection.confidence\*100), (x1 + 10, y1 + 35), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
                      
                              cv2.putText(frame, f"X: {int(detection.spatialCoordinates.x)} mm", (x1 + 10, y1 + 50), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
                      
                              cv2.putText(frame, f"Y: {int(detection.spatialCoordinates.y)} mm", (x1 + 10, y1 + 65), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
                      
                              cv2.putText(frame, f"Z: {int(detection.spatialCoordinates.z)} mm", (x1 + 10, y1 + 80), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
                      
                              cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), cv2.FONT_HERSHEY_SIMPLEX)
                      
                          cv2.putText(frame, "NN fps: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, (255,255,255))
                      
                          cv2.imshow("depth", depthFrameColor)
                      
                          cv2.imshow("preview", frame)
                      
                          if cv2.waitKey(1) == ord('q'):
                      
                              break

                      I ran this code from depth-ai examples then the same error appeared. this is my last blob and json file:

                      any help please?

                      • erik replied to this.