Matija
Thanks for the mean/scale value suggestion! That lead me down the right path and the results on the OAK-D are better. Now, I can focus on improving the training of the model.
Here is the call to convert the model
subprocess.call("mo \
--saved_model_dir \"" + model_export_dir + "\" \
--model_name " + model_base_name + " \
--data_type " + data_type + " \
--input_shape [1," + str(IMAGE_SIZE) + "," + str(IMAGE_SIZE) + ",3] \
--reverse_input_channel \
--source_layout nhwc \
--target_layout nchw \
--mean_values [104,117,123] \
--scale_values [255,255,255] \
--output_dir \"" + export_vino_dir + "\"", shell=True)
Here is the code for blob converter
blob_path = blobconverter.from_openvino(
xml=xml_file,
bin=bin_file,
data_type=data_type,
shaves=6,
version="2022.1"
)