The ImgDetections message contains a list of detections, which
contains label, confidence, and the bounding box information (xmin,
ymin, xmax, ymax).
This is the code we used for testing:
........
for detection in detections:
print(f"{detection.xmin} {detection.ymin} {detection.xmax} {detection.ymax}")
bbox = frameNorm(frame, (detection.xmin, detection.ymin,
detection.xmax, detection.ymax))
.......
The box coordinates are supposed to be normalized, however we
sometimes get short sections where the xmin value is either negative
or > 0
The NN node is the YoloDetectionNetwork, the model is a gold_yolo blob that
was obtained by passing Gold_n_dist.pt to the Luxonis blob conversion
tool
The issue is not limited to the gold_yolo I just mentioned
-4.883110523223877e-05 0.1005859375 0.17231445014476776 0.408203125
4.883110523223877e-05 0.1059570461511612 0.188183590769 0.4212890863418579
0.5125976204872131 0.740429699420929 0.8064452409744263 0.9996093511581421
0.0 0.11318360269069672 0.19277343153953552 0.42802733182907104
0.529296875 0.7547851800918579 0.82958984375 0.99951171875
4.883110523223877e-05 0.1191406399011612 0.19921875 0.4291015863418579
0.5438476800918579 0.7804198861122131 0.8353515863418579 0.9993163347244263
9.766221046447754e-05 0.12275391817092896 0.20654296875 0.44111329317092896
0.0 0.13076172769069672 0.2197265625 0.45732420682907104
0.5897461175918579 0.826416015625 0.891308605670929 0.99951171875
0.0 0.13417969644069672 0.2275390625 0.46611326932907104