Hi jakaskerl
Great work bro appriciate it so much 🙂

Is it possible to put ROI before detection and tracking?

    Hi Fakhrullo
    Make a manip node with setCropRect() to crop to specified size of the preview stream and setResize() to make sure the input fits the NN first layer size.

    Thanks,
    Jaka

      Hi jakaskerl
      Thank you very much, I will continue working on this project if I have any questions I'll notify you

      Thanks,
      Fakhrullo

      Hi jakaskerl

      How are you doing bro? I have a question regarding that project, I adjusted the project as I want and it's working as expected, now I have to test detection and tracking with crowd, currently I can't put camera to street or any public places, so I wanted to test it with videos. However, I couldn't manage to integrate the video reading in the project, I tried using this method https://docs.luxonis.com/projects/api/en/latest/samples/ObjectTracker/object_tracker_video/#source-code
      In the beginnign I tried to add this to my code but I couldn't get it right, so I added Yolo to the code in the documentation I mentioned above. But it's not running on device, how can I test my project with video? can you help me with that please.

      Thanks,
      Fakhrullo

      Hi jakaskerl

      I added manip mode as you said, I added like this:
      # Creating Manip node
      manip = pipeline.create(dai.node.ImageManip)
      # Setting CropRect for the Region of Interest
      manip.initialConfig.setCropRect(*custom_roi)
      # Setting Resize for the neural network input size
      manip.initialConfig.setResize(640, 640)
      # Setting maximum output frame size based on the desired output dimensions
      max_output_width = 640
      max_output_height = 640
      max_output_frame_size = 3 * max_output_width * max_output_height # Assuming 3 channels for BGR image
      manip.setMaxOutputFrameSize(max_output_frame_size)
      # Connecting Manip node to ColorCamera
      camRgb.preview.link(manip.inputImage)
      # Connecting Manip node to YoloDetectionNetwork
      manip.out.link(detectionNetwork.input)

      But I'm getting black screen, Where am I making mistake? is there any tutorial or documentation how to do that?

      Hi @Fakhrullo
      Can I see the full code?
      If you are inputting the preview image into the manip, make sure it's larger than the output image, otherwise the crop makes no sense.
      Maybe you could link the .video output and set the frame type to RGB.

      Thanks,
      Jaka

        Hi jakaskerl
        Here's the code

        from pathlib import Path

        import cv2

        import depthai as dai

        import time

        from environs import Env
        env = Env()env.read_env()
        MxID = env('MxID')# Set your custom ROI coordinates (x, y, width, height)custom_roi = (350, 250, 640, 640) # Example coordinates, adjust as needed
        # tiny yolo v4 label textslabelMap = [ "person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "sofa", "pottedplant", "bed", "diningtable", "toilet", "tvmonitor", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"]
        nnPath = str((Path(__file__).parent / Path('model/yolov6n_coco_640x640_openvino_2022.1_6shave.blob')).resolve().absolute())
        # Create pipelinepipeline = dai.Pipeline()
        # Define sources and outputscamRgb = pipeline.create(dai.node.ColorCamera)detectionNetwork = pipeline.create(dai.node.YoloDetectionNetwork)objectTracker = pipeline.create(dai.node.ObjectTracker)
        xlinkOut = pipeline.create(dai.node.XLinkOut)trackerOut = pipeline.create(dai.node.XLinkOut)
        xlinkOut.setStreamName("preview")trackerOut.setStreamName("tracklets")
        # Creating Manip nodemanip = pipeline.create(dai.node.ImageManip)# Setting CropRect for the Region of Interestmanip.initialConfig.setCropRect(*custom_roi)# Setting Resize for the neural network input sizemanip.initialConfig.setResize(640, 640)# Setting maximum output frame size based on the desired output dimensionsmax_output_width = 640max_output_height = 640max_output_frame_size = 3 * max_output_width * max_output_height # Assuming 3 channels for BGR imagemanip.setMaxOutputFrameSize(max_output_frame_size)
        # Propertiesif MxID == "14442C10C1AD3FD700": camRgb.setImageOrientation(dai.CameraImageOrientation.HORIZONTAL_MIRROR)camRgb.setPreviewSize(640, 640)camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)camRgb.setInterleaved(False)camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)camRgb.setFps(40)
        # Network specific settingsdetectionNetwork.setConfidenceThreshold(0.5)detectionNetwork.setNumClasses(80)detectionNetwork.setCoordinateSize(4)# detectionNetwork.setAnchors([10, 14, 23, 27, 37, 58, 81, 82, 135, 169, 344, 319]) #YOLOv4 uchun# detectionNetwork.setAnchorMasks({"side26": [1, 2, 3], "side13": [3, 4, 5]})detectionNetwork.setAnchors([10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326]) #YOLOv5 uchundetectionNetwork.setAnchorMasks({"side52": [0,1,2], "side26": [3,4,5], "side13": [6,7,8]})detectionNetwork.setIouThreshold(0.5)detectionNetwork.setBlobPath(nnPath)detectionNetwork.setNumInferenceThreads(2)detectionNetwork.input.setBlocking(False)
        objectTracker.setDetectionLabelsToTrack([0]) # track only person# possible tracking types: ZERO_TERM_COLOR_HISTOGRAM, ZERO_TERM_IMAGELESS, SHORT_TERM_IMAGELESS, SHORT_TERM_KCFobjectTracker.setTrackerType(dai.TrackerType.ZERO_TERM_COLOR_HISTOGRAM)# take the smallest ID when new object is tracked, possible options: SMALLEST_ID, UNIQUE_IDobjectTracker.setTrackerIdAssignmentPolicy(dai.TrackerIdAssignmentPolicy.SMALLEST_ID)
        #Linking# Connecting Manip node to ColorCameracamRgb.preview.link(manip.inputImage)# Connecting Manip node to YoloDetectionNetworkmanip.out.link(detectionNetwork.input)# camRgb.preview.link(detectionNetwork.input)objectTracker.passthroughTrackerFrame.link(xlinkOut.input)

        detectionNetwork.passthrough.link(objectTracker.inputTrackerFrame)
        detectionNetwork.passthrough.link(objectTracker.inputDetectionFrame)detectionNetwork.out.link(objectTracker.inputDetections)objectTracker.out.link(trackerOut.input)
        device = dai.DeviceInfo(MxID)
        # Connect to device and start pipelinewith dai.Device(pipeline, device) as device:
        preview = device.getOutputQueue("preview", 4, False) tracklets = device.getOutputQueue("tracklets", 4, False)
        startTime = time.monotonic() counter = 0 fps = 0 frame = None
        while(True): imgFrame = preview.get() track = tracklets.get()
        counter+=1 current_time = time.monotonic() if (current_time - startTime) > 1 : fps = counter / (current_time - startTime) counter = 0 startTime = current_time
        color = (255, 0, 0) text_color = (0, 0, 255) rectangle = (111, 147, 26)
        frame = imgFrame.getCvFrame() trackletsData = track.tracklets for t in trackletsData: if t.status.name == "TRACKED": roi = t.roi.denormalize(frame.shape[1], frame.shape[0]) x1 = int(roi.topLeft().x) y1 = int(roi.topLeft().y) x2 = int(roi.bottomRight().x) y2 = int(roi.bottomRight().y)
        try: label = labelMap[t.label] except: label = t.label # if t.status.name == 'TRACKED': cv2.putText(frame, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, text_color) cv2.putText(frame, f"ID: {[t.id]}", (x1 + 10, y1 + 45), cv2.FONT_HERSHEY_TRIPLEX, 0.5, text_color) cv2.putText(frame, t.status.name, (x1 + 10, y1 + 70), cv2.FONT_HERSHEY_TRIPLEX, 0.5, text_color) cv2.rectangle(frame, (x1, y1), (x2, y2), rectangle, cv2.FONT_HERSHEY_SIMPLEX)
        cv2.putText(frame, "FPS: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.6, text_color)
        cv2.imshow("tracker", frame)
        if cv2.waitKey(1) == ord('q'): break

        Here's better version:

        from pathlib import Path
        import cv2
        import depthai as dai
        import time
        
        from environs import Env
        
        env = Env()
        env.read_env()
        
        MxID = env('MxID')
        # Set your custom ROI coordinates (x, y, width, height)
        custom_roi = (350, 250, 640, 640)  # Example coordinates, adjust as needed
        
        # tiny yolo v4 label texts
        labelMap = [
            "person",         "bicycle",    "car",           "motorbike",     "aeroplane",   "bus",           "train",
            "truck",          "boat",       "traffic light", "fire hydrant",  "stop sign",   "parking meter", "bench",
            "bird",           "cat",        "dog",           "horse",         "sheep",       "cow",           "elephant",
            "bear",           "zebra",      "giraffe",       "backpack",      "umbrella",    "handbag",       "tie",
            "suitcase",       "frisbee",    "skis",          "snowboard",     "sports ball", "kite",          "baseball bat",
            "baseball glove", "skateboard", "surfboard",     "tennis racket", "bottle",      "wine glass",    "cup",
            "fork",           "knife",      "spoon",         "bowl",          "banana",      "apple",         "sandwich",
            "orange",         "broccoli",   "carrot",        "hot dog",       "pizza",       "donut",         "cake",
            "chair",          "sofa",       "pottedplant",   "bed",           "diningtable", "toilet",        "tvmonitor",
            "laptop",         "mouse",      "remote",        "keyboard",      "cell phone",  "microwave",     "oven",
            "toaster",        "sink",       "refrigerator",  "book",          "clock",       "vase",          "scissors",
            "teddy bear",     "hair drier", "toothbrush"
        ]
        
        nnPath = str((Path(__file__).parent / Path('model/yolov6n_coco_640x640_openvino_2022.1_6shave.blob')).resolve().absolute())
        
        # Create pipeline
        pipeline = dai.Pipeline()
        
        # Define sources and outputs
        camRgb = pipeline.create(dai.node.ColorCamera)
        detectionNetwork = pipeline.create(dai.node.YoloDetectionNetwork)
        objectTracker = pipeline.create(dai.node.ObjectTracker)
        
        xlinkOut = pipeline.create(dai.node.XLinkOut)
        trackerOut = pipeline.create(dai.node.XLinkOut)
        
        xlinkOut.setStreamName("preview")
        trackerOut.setStreamName("tracklets")
        
        # Creating Manip node
        manip = pipeline.create(dai.node.ImageManip)
        # Setting CropRect for the Region of Interest
        manip.initialConfig.setCropRect(*custom_roi)
        # Setting Resize for the neural network input size
        manip.initialConfig.setResize(640, 640)
        # Setting maximum output frame size based on the desired output dimensions
        max_output_width = 640
        max_output_height = 640
        max_output_frame_size = 3 * max_output_width * max_output_height # Assuming 3 channels for BGR image
        manip.setMaxOutputFrameSize(max_output_frame_size)
        
        # Properties
        if MxID == "14442C10C1AD3FD700":
            camRgb.setImageOrientation(dai.CameraImageOrientation.HORIZONTAL_MIRROR)
        camRgb.setPreviewSize(640, 640)
        camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
        camRgb.setInterleaved(False)
        camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)
        camRgb.setFps(40)
        
        # Network specific settings
        detectionNetwork.setConfidenceThreshold(0.5)
        detectionNetwork.setNumClasses(80)
        detectionNetwork.setCoordinateSize(4)
        # detectionNetwork.setAnchors([10, 14, 23, 27, 37, 58, 81, 82, 135, 169, 344, 319]) #YOLOv4 uchun
        # detectionNetwork.setAnchorMasks({"side26": [1, 2, 3], "side13": [3, 4, 5]})
        detectionNetwork.setAnchors([10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326]) #YOLOv5 uchun
        detectionNetwork.setAnchorMasks({"side52": [0,1,2], "side26": [3,4,5], "side13": [6,7,8]})
        detectionNetwork.setIouThreshold(0.5)
        detectionNetwork.setBlobPath(nnPath)
        detectionNetwork.setNumInferenceThreads(2)
        detectionNetwork.input.setBlocking(False)
        
        objectTracker.setDetectionLabelsToTrack([0])  # track only person
        # possible tracking types: ZERO_TERM_COLOR_HISTOGRAM, ZERO_TERM_IMAGELESS, SHORT_TERM_IMAGELESS, SHORT_TERM_KCF
        objectTracker.setTrackerType(dai.TrackerType.ZERO_TERM_COLOR_HISTOGRAM)
        # take the smallest ID when new object is tracked, possible options: SMALLEST_ID, UNIQUE_ID
        objectTracker.setTrackerIdAssignmentPolicy(dai.TrackerIdAssignmentPolicy.SMALLEST_ID)
        
        #Linking
        # Connecting Manip node to ColorCamera
        camRgb.preview.link(manip.inputImage)
        # Connecting Manip node to YoloDetectionNetwork
        manip.out.link(detectionNetwork.input)
        # camRgb.preview.link(detectionNetwork.input)
        objectTracker.passthroughTrackerFrame.link(xlinkOut.input)
        
        
        detectionNetwork.passthrough.link(objectTracker.inputTrackerFrame)
        
        detectionNetwork.passthrough.link(objectTracker.inputDetectionFrame)
        detectionNetwork.out.link(objectTracker.inputDetections)
        objectTracker.out.link(trackerOut.input)
        
        device = dai.DeviceInfo(MxID)
        
        # Connect to device and start pipeline
        with dai.Device(pipeline, device) as device:
        
            preview = device.getOutputQueue("preview", 4, False)
            tracklets = device.getOutputQueue("tracklets", 4, False)
        
            startTime = time.monotonic()
            counter = 0
            fps = 0
            frame = None
        
            while(True):
                imgFrame = preview.get()
                track = tracklets.get()
        
                counter+=1
                current_time = time.monotonic()
                if (current_time - startTime) > 1 :
                    fps = counter / (current_time - startTime)
                    counter = 0
                    startTime = current_time
        
                color = (255, 0, 0)
                text_color = (0, 0, 255)
                rectangle = (111, 147, 26)
        
                frame = imgFrame.getCvFrame()
                trackletsData = track.tracklets
                for t in trackletsData:
                    if t.status.name == "TRACKED":
                        roi = t.roi.denormalize(frame.shape[1], frame.shape[0])
                        x1 = int(roi.topLeft().x)
                        y1 = int(roi.topLeft().y)
                        x2 = int(roi.bottomRight().x)
                        y2 = int(roi.bottomRight().y)
        
                        try:
                            label = labelMap[t.label]
                        except:
                            label = t.label
                        # if t.status.name == 'TRACKED':
                        cv2.putText(frame, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, text_color)
                        cv2.putText(frame, f"ID: {[t.id]}", (x1 + 10, y1 + 45), cv2.FONT_HERSHEY_TRIPLEX, 0.5, text_color)
                        cv2.putText(frame, t.status.name, (x1 + 10, y1 + 70), cv2.FONT_HERSHEY_TRIPLEX, 0.5, text_color)
                        cv2.rectangle(frame, (x1, y1), (x2, y2), rectangle, cv2.FONT_HERSHEY_SIMPLEX)
        
                cv2.putText(frame, "FPS: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.6, text_color)
        
                cv2.imshow("tracker", frame)
        
                if cv2.waitKey(1) == ord('q'):
                    break

          Hi Fakhrullo
          setCropRect() expects normalized values. Divide it by 416, then I believe it should work.

          Thanks,
          Jaka

            5 days later

            Hi jakaskerl
            Thanks it worked fine, I'm getting cropped frame.
            Is it possible to fuse cropped frame and whole frame? I mean it shows whole frame and cropped frame within whole frame may be with a box? If It is impossible how can I show whole and cropped frames in 2 different windows?

              Hi Fakhrullo
              Sorry, I don't really understand what you are trying to achieve. Both frames are numpy arrays which means you can easily stack one on top of the other.

              Thanks,
              Jaka

                Hi jakaskerl
                Yeah, basically I want to retrieve both full and cropped frames, to achieve that what should I do?

                Fakhrullo camRgb.preview.link(manip.inputImage)

                Here, you can pipe the preview stream to a new XLink node, so you can view it on host side.
                This will enable you to see both the full preview frame as well as cropped frame (on which the inference was made).

                Thanks,
                Jaka