If I subtract 2 StereoDepth frames from each other how to output in OpenCV
Thank you for reply.
As the subtraction of depth frames as we mentioned here.
Selection of the farthest or nearest area of pixels in depth frame.
Mask of specific shape from or to depth frame.
(4. Some NN models use both depth and RGB image maybe.)
.etc
Some thoughts for now, thank you
Hello Adam, I've add the following process for the inputs, but it seems something not right.
Could you let me know how to adapt the depthai code.
Thank you Adam.
script.setScript(
"""
old = node.io['in'].get()
while True:
frame = node.io['in'].get()
node.io['img1'].send(old)
node.io['img2'].send(frame)
old = frame
""")
script.outputs['img1'
].link(nn.inputs[
'input1'
])
script.outputs['img2'
].link(nn.inputs[
'inout2'
])
Hey it seems like you are updating the "old" frame each time.
Which means you are basically subtracting 2 immediate frames from each other, is that what you are trying to do?
If you want a "control" frame, then update to remove old = frame
from your code.
Also, put in a sleep at the top of the while loop or you get unexpected behavior.
Thanks for reply.
I got images like this with the diff process above:
AdamPolak This is the "final" version to do a diff between 2 depth map images:
And I added time_diff code:
timestamp = dai.Clock.now();
with dai.Device(p) as device:
…
time_diff = depthDiff.getTimestamp() - timestamp
print('time_diff = '
, time_diff)
timestamp = depthDiff.getTimestamp()
Which the output is always 0.0
I'm confused now.
- Edited
AdamPolak
Thank you Adam.
The python code is as following:
import numpy as np
import cv2
import depthai as dai
resolution = (1280, 800) # 24 FPS (without visualization)
lrcheck = False # Better handling for occlusions
extended = False # Closer-in minimum depth, disparity range is doubled
subpixel = True # True # Better accuracy for longer distance, fractional disparity 32-levels
p = dai.Pipeline()
# Configure Mono Camera Properties
left = p.createMonoCamera()
left.setResolution(dai.MonoCameraProperties.SensorResolution.THE_800_P)
left.setBoardSocket(dai.CameraBoardSocket.LEFT)
right = p.createMonoCamera()
right.setResolution(dai.MonoCameraProperties.SensorResolution.THE_800_P)
right.setBoardSocket(dai.CameraBoardSocket.RIGHT)
stereo = p.createStereoDepth()
left.out.link(stereo.left)
right.out.link(stereo.right)
# Set stereo depth options
stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
config = stereo.initialConfig.get()
config.postProcessing.speckleFilter.enable = False
# config.postProcessing.speckleFilter.speckleRange = 60
config.postProcessing.temporalFilter.enable = False
config.postProcessing.spatialFilter.enable = False
# config.postProcessing.spatialFilter.holeFillingRadius = 2
# config.postProcessing.spatialFilter.numIterations = 1
config.postProcessing.thresholdFilter.minRange = 1000 # mm
config.postProcessing.thresholdFilter.maxRange = 10000 # mm
config.censusTransform.enableMeanMode = True
# this 2 parameters should be fine-tuning
config.costMatching.linearEquationParameters.alpha = 0
config.costMatching.linearEquationParameters.beta = 2
stereo.initialConfig.set(config)
stereo.setLeftRightCheck(lrcheck)
stereo.setExtendedDisparity(extended)
stereo.setSubpixel(subpixel)
# stereo.setDepthAlign(dai.CameraBoardSocket.RGB)
stereo.setRectifyEdgeFillColor(0) # Black, to better see the cutout
# Depth -> Depth Diff
nn = p.createNeuralNetwork()
nn.setBlobPath("diff_images_simplified_openvino_2022.1_4shave.blob")
script = p.create(dai.node.Script)
stereo.disparity.link(script.inputs['in'])
timestamp = dai.Clock.now()
print("ts1 = ", timestamp)
script.setScript("""
old = node.io['in'].get()
while True:
frame = node.io['in'].get()
node.io['img1'].send(old)
node.io['img2'].send(frame)
old = frame
""")
script.outputs['img1'].link(nn.inputs['input2'])
script.outputs['img2'].link(nn.inputs['input1'])
# stereo.disparity.link(nn.inputs["input1"])
depthDiffOut = p.createXLinkOut()
depthDiffOut.setStreamName("depth_diff")
nn.out.link(depthDiffOut.input)
with dai.Device(p) as device:
qDepthDiff = device.getOutputQueue(name="depth_diff", maxSize=4, blocking=False)
while True:
depthDiff = qDepthDiff.get()
print("ts0 = ", timestamp)
time_diff = depthDiff.getTimestamp() - timestamp
print('time_diff = ', time_diff)
timestamp = depthDiff.getTimestamp()
print("ts 2 = ", timestamp)
# Shape it here
floatVector = depthDiff.getFirstLayerFp16()
diff = np.array(floatVector).reshape(resolution[0], resolution[1])
colorize = cv2.normalize(diff, None, 255, 0, cv2.NORM_INF, cv2.CV_8UC1)
cv2.applyColorMap(colorize, cv2.COLORMAP_JET)
cv2.imshow("Diff", colorize)
if cv2.waitKey(1) == ord('q'):
break
AdamPolak
And the model code is:
from pathlib import Path
import torch
from torch import nn
import blobconverter
import onnx
from onnxsim import simplify
import sys
class DiffImgs(nn.Module):
def forward(self, img1, img2):
img1DepthFP16 = 256.0 \* img1[:,:,:,1::2] + img1[:,:,:,::2]
img2DepthFP16 = 256.0 \* img2[:,:,:,1::2] + img2[:,:,:,::2]
# Create binary masks for each image
# A pixel in the mask is 1 if the corresponding pixel in the image is 0, otherwise it's 0
img1Mask = (img1DepthFP16 == 0)
img2Mask = (img2DepthFP16 == 0)
# If a pixel is 0 in either image, set the corresponding pixel in both images to 0
img1DepthFP16 = img1DepthFP16 \* (\~img1Mask & \~img2Mask)
img2DepthFP16 = img2DepthFP16 \* (\~img1Mask & \~img2Mask)
# Compute the difference between the two images
diff = torch.sub(img1DepthFP16, img2DepthFP16)
return diff
\# Instantiate the model
model = DiffImgs()
\# Create dummy input for the ONNX export
input1 = torch.randn(1, 1, 800, 1280 \* 2, dtype=torch.float16)
input2 = torch.randn(1, 1, 800, 1280 \* 2, dtype=torch.float16)
onnx_file = **"diff_images.onnx"**
\# Export the model
torch.onnx.export(model, # model being run
(input1, input2), # model input (or a tuple for multiple inputs)
onnx_file, # where to save the model (can be a file or file-like object)
opset_version=12, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names = [**'input1'**, **'input2'**], # the model's input names
output_names = [**'output'**])
\# Simplify the model
onnx_model = onnx.load(onnx_file)
onnx_simplified, check = simplify(onnx_file)
onnx.save(onnx_simplified, **"diff_images_simplified.onnx"**)
\# Use blobconverter to convert onnx->IR->blob
blobconverter.from_onnx(
model=**"diff_images_simplified.onnx"**,
data_type=**"FP16"**,
shaves=4,
use_cache=False,
output_dir=**"../"**,
optimizer_params=[],
compile_params=[**'-ip U8'**],
)