@KlemenSkrlj This is the yaml file I used -
model:
name: can_detection_01aug2025_augmented
predefined_model:
name: DetectionModel
params:
variant: light
loss_params:
iou_type: "siou"
n_warmup_epochs: 0 # No assigner warmup
iou_loss_weight: 20 # Should be 2.5 * accumulate_grad_batches for best results
class_loss_weight: 8 # Should be 1 * accumulate_grad_batches for best results
loader:
params:
dataset_name: can_defect_dataset_v9
trainer:
preprocessing:
train_image_size: [416, 416]
keep_aspect_ratio: true
normalize:
active: true
params:
mean: [0., 0., 0.]
std: [1, 1, 1]
augmentations:
- name: Affine
params:
scale: [0.7, 1.7]
rotate: 20
shear: 5
p: 0.3
- name: HorizontalFlip
params:
p: 0.3
- name: ColorJitter
params:
brightness: [0.8, 1.2]
contrast: [0.8, 1.2]
saturation: [0.8, 1.2]
hue: 0
p: 0.2
batch_size: 8
epochs: &epochs 400
accumulate_grad_batches: 8 # For best results, always accumulate gradients to effectively use 64 batch size
n_workers: 8
validation_interval: 10
n_log_images: 8
callbacks:
- name: EMACallback
params:
decay: 0.9999
use_dynamic_decay: True
decay_tau: 2000
training_strategy: # Fine tuning params
name: "TripleLRSGDStrategy"
params:
warmup_epochs: 2
warmup_bias_lr: 0.05
warmup_momentum: 0.5
lr: 0.0032
lre: 0.000384
momentum: 0.843
weight_decay: 0.00036
nesterov: True