@KlemenSkrlj This is the log file. I am unable to attach it directly here , hence pasting it -
──────────────────────────────────────────────────────────── Validation ─────────────────────────────────────────────────────────────
Loss: 28.90247917175293
Metrics:
EfficientBBoxHead
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┓
┃ Name ┃ Value ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━┩
│ MeanAveragePrecision │ 0.00000 │
│ map_50 │ 0.00000 │
│ map_75 │ 0.00000 │
│ map_small │ 0.00000 │
│ map_medium │ 0.00000 │
│ map_large │ 0.00000 │
│ mar_1 │ 0.00000 │
│ mar_10 │ 0.00000 │
│ mar_100 │ 0.00000 │
│ mar_small │ 0.00000 │
│ mar_medium │ 0.00000 │
│ mar_large │ 0.00000 │
│ f1_small │ nan │
│ f1_medium │ nan │
│ f1_large │ nan │
│ map_per_class_blood │ 0.00000 │
│ map_per_class_bruise │ 0.00000 │
│ map_per_class_can │ 0.00000 │
│ map_per_class_dark_flakes │ 0.00000 │
│ map_per_class_defective_appearance │ 0.00000 │
│ map_per_class_empty_can │ 0.00000 │
│ map_per_class_incomplete │ 0.00000 │
│ map_per_class_pin_bone │ 0.00000 │
│ map_per_class_scorching │ 0.00000 │
│ map_per_class_skin_and_scales │ 0.00000 │
│ mar_100_per_class_blood │ 0.00000 │
│ mar_100_per_class_bruise │ 0.00000 │
│ mar_100_per_class_can │ 0.00000 │
│ mar_100_per_class_dark_flakes │ 0.00000 │
│ mar_100_per_class_defective_appearance │ 0.00000 │
│ mar_100_per_class_empty_can │ 0.00000 │
│ mar_100_per_class_incomplete │ 0.00000 │
│ mar_100_per_class_pin_bone │ 0.00000 │
│ mar_100_per_class_scorching │ 0.00000 │
│ mar_100_per_class_skin_and_scales │ 0.00000 │
│ mcc │ 0.00000 │
└────────────────────────────────────────┴─────────┘
─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
| print_results:186
2025-10-15 12:25:59 [INFO] Validation main metric (EfficientBBoxHead/MeanAveragePrecision): 0.0000 | _print_results:746
2025-10-15 12:25:59 [WARNING] Logged images (6) != expected (8). Possible reasons: class imbalance or a small number of images in the split. | _evaluation_epoch_end:720
2025-10-15 12:25:59 [ERROR] Encountered an exception during training. | _train:287
Traceback (most recent call last):
File "/home/nileena/.conda/envs/luxonis-train/bin/luxonis_train", line 8, in <module>
sys.exit(app.meta())
│ │ │ └ <property object at 0x7693670d9f80>
│ │ └ App(help='Luxonis Train CLI', alias=(), version=<function <lambda> at 0x769368326f80>, version_flags=('--version',), help_fla...
│ └ <built-in function exit>
└ <module 'sys' (built-in)>
File "/home/nileena/.local/lib/python3.10/site-packages/cyclopts/core.py", line 1257, in __call__
return command(*bound.args, **bound.kwargs)
│ │ │ │ └ <property object at 0x769367309710>
│ │ │ └ <BoundArguments (tokens=('train', '--config', 'can_detection_14oct.yaml'))>
│ │ └ <property object at 0x7693673096c0>
│ └ <BoundArguments (tokens=('train', '--config', 'can_detection_14oct.yaml'))>
└ <function launcher at 0x769366e388b0>
File "/home/nileena/.conda/envs/luxonis-train/lib/python3.10/site-packages/luxonis_train/__main__.py", line 363, in launcher
app(tokens)
│ └ ('train', '--config', 'can_detection_14oct.yaml')
└ App(help='Luxonis Train CLI', alias=(), version=<function <lambda> at 0x769368326f80>, version_flags=('--version',), help_fla...
File "/home/nileena/.local/lib/python3.10/site-packages/cyclopts/core.py", line 1257, in __call__
return command(*bound.args, **bound.kwargs)
│ │ │ │ └ <property object at 0x769367309710>
│ │ │ └ <BoundArguments (config='can_detection_14oct.yaml')>
│ │ └ <property object at 0x7693673096c0>
│ └ <BoundArguments (config='can_detection_14oct.yaml')>
└ <function train at 0x7693670c48b0>
File "/home/nileena/.conda/envs/luxonis-train/lib/python3.10/site-packages/luxonis_train/__main__.py", line 62, in train
create_model(config, opts, debug).train(weights=weights)
│ │ │ │ └ None
│ │ │ └ False
│ │ └ None
│ └ 'can_detection_14oct.yaml'
└ <function create_model at 0x7693670c4820>
File "/home/nileena/.conda/envs/luxonis-train/lib/python3.10/site-packages/luxonis_train/core/core.py", line 354, in train
self._train(
│ └ <function LuxonisModel._train at 0x769128114c10>
└ <luxonis_train.core.core.LuxonisModel object at 0x76936830abc0>
> File "/home/nileena/.conda/envs/luxonis-train/lib/python3.10/site-packages/luxonis_train/core/core.py", line 285, in _train
self.pl_trainer.fit(*args, ckpt_path=resume, **kwargs)
│ │ │ │ │ └ {}
│ │ │ │ └ None
│ │ │ └ (LuxonisLightningModule(
│ │ │ (nodes): Nodes(
│ │ │ (EfficientRep): EfficientRep(
│ │ │ (repvgg_encoder): RepVGGBlock(
│ │ │ (no...
│ │ └ <function Trainer.fit at 0x7691374cdc60>
│ └ <lightning.pytorch.trainer.trainer.Trainer object at 0x769128113a00>
└ <luxonis_train.core.core.LuxonisModel object at 0x76936830abc0>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/trainer.py", line 561, in fit
call._call_and_handle_interrupt(
│ └ <function _call_and_handle_interrupt at 0x7691375b5c60>
└ <module 'lightning.pytorch.trainer.call' from '/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/ca...
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/call.py", line 47, in _call_and_handle_interrupt
return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs)
│ │ │ │ │ └ {}
│ │ │ │ └ <lightning.pytorch.trainer.trainer.Trainer object at 0x769128113a00>
│ │ │ └ (LuxonisLightningModule(
│ │ │ (nodes): Nodes(
│ │ │ (EfficientRep): EfficientRep(
│ │ │ (repvgg_encoder): RepVGGBlock(
│ │ │ (no...
│ │ └ <bound method Trainer._fit_impl of <lightning.pytorch.trainer.trainer.Trainer object at 0x769128113a00>>
│ └ <property object at 0x7691374d4360>
└ <lightning.pytorch.trainer.trainer.Trainer object at 0x769128113a00>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/strategies/launchers/subprocess_script.py", line 105, in launch
return function(*args, **kwargs)
│ │ └ {}
│ └ (LuxonisLightningModule(
│ (nodes): Nodes(
│ (EfficientRep): EfficientRep(
│ (repvgg_encoder): RepVGGBlock(
│ (no...
└ <bound method Trainer._fit_impl of <lightning.pytorch.trainer.trainer.Trainer object at 0x769128113a00>>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/trainer.py", line 599, in _fit_impl
self._run(model, ckpt_path=ckpt_path)
│ │ │ └ None
│ │ └ LuxonisLightningModule(
│ │ (nodes): Nodes(
│ │ (EfficientRep): EfficientRep(
│ │ (repvgg_encoder): RepVGGBlock(
│ │ (non...
│ └ <function Trainer._run at 0x7691374ce4d0>
└ <lightning.pytorch.trainer.trainer.Trainer object at 0x769128113a00>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/trainer.py", line 1012, in _run
results = self._run_stage()
│ └ <function Trainer._run_stage at 0x7691374ce5f0>
└ <lightning.pytorch.trainer.trainer.Trainer object at 0x769128113a00>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/trainer.py", line 1054, in _run_stage
self._run_sanity_check()
│ └ <function Trainer._run_sanity_check at 0x7691374ce680>
└ <lightning.pytorch.trainer.trainer.Trainer object at 0x769128113a00>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/trainer.py", line 1083, in _run_sanity_check
val_loop.run()
│ └ <function _no_grad_context.<locals>._decorator at 0x769137453be0>
└ <lightning.pytorch.loops.evaluation_loop._EvaluationLoop object at 0x769128111600>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/loops/utilities.py", line 179, in _decorator
return loop_run(self, *args, **kwargs)
│ │ │ └ {}
│ │ └ ()
│ └ <lightning.pytorch.loops.evaluation_loop._EvaluationLoop object at 0x769128111600>
└ <function _EvaluationLoop.run at 0x769137453b50>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/loops/evaluation_loop.py", line 152, in run
return self.on_run_end()
│ └ <function _EvaluationLoop.on_run_end at 0x7691374640d0>
└ <lightning.pytorch.loops.evaluation_loop._EvaluationLoop object at 0x769128111600>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/loops/evaluation_loop.py", line 295, in on_run_end
self._on_evaluation_epoch_end()
│ └ <function _EvaluationLoop._on_evaluation_epoch_end at 0x7691374644c0>
└ <lightning.pytorch.loops.evaluation_loop._EvaluationLoop object at 0x769128111600>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/loops/evaluation_loop.py", line 377, in _on_evaluation_epoch_end
trainer._logger_connector.on_epoch_end()
│ │ └ <function _LoggerConnector.on_epoch_end at 0x7691374531c0>
│ └ <lightning.pytorch.trainer.connectors.logger_connector.logger_connector._LoggerConnector object at 0x769366e276d0>
└ <lightning.pytorch.trainer.trainer.Trainer object at 0x769128113a00>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py", line 197, in on_epoch_end
metrics = self.metrics
│ └ <property object at 0x76913744f150>
└ <lightning.pytorch.trainer.connectors.logger_connector.logger_connector._LoggerConnector object at 0x769366e276d0>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py", line 236, in metrics
return self.trainer._results.metrics(on_step)
│ │ │ └ False
│ │ └ <property object at 0x7691374d5a80>
│ └ <lightning.pytorch.trainer.trainer.Trainer object at 0x769128113a00>
└ <lightning.pytorch.trainer.connectors.logger_connector.logger_connector._LoggerConnector object at 0x769366e276d0>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/logger_connector/result.py", line 476, in metrics
value = self._get_cache(result_metric, on_step)
│ │ │ └ False
│ │ └ _ResultMetric('val/metric/EfficientBBoxHead/MeanAveragePrecision', value=0.0, cumulated_batch_size=1)
│ └ <staticmethod(<function _ResultCollection._get_cache at 0x7691374524d0>)>
└ {False, {'on_validation_epoch_end.val/loss/EfficientBBoxHead/AdaptiveDetectionLoss': _ResultMetric('val/loss/EfficientBBoxHea...
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/logger_connector/result.py", line 440, in _get_cache
result_metric.compute()
│ └ <function _ResultMetric.compute at 0x768fd8254f70>
└ _ResultMetric('val/metric/EfficientBBoxHead/MeanAveragePrecision', value=0.0, cumulated_batch_size=1)
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/logger_connector/result.py", line 289, in wrapped_func
self._computed = compute(*args, **kwargs)
│ │ │ │ └ {}
│ │ │ └ ()
│ │ └ <bound method _ResultMetric.compute of _ResultMetric('val/metric/EfficientBBoxHead/MeanAveragePrecision', value=0.0, cumulate...
│ └ None
└ _ResultMetric('val/metric/EfficientBBoxHead/MeanAveragePrecision', value=0.0, cumulated_batch_size=1)
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/logger_connector/result.py", line 249, in compute
value = self.meta.sync(self.value.clone()) # `clone` because `sync` is in-place
│ │ │ │ │ └ <method 'clone' of 'torch._C.TensorBase' objects>
│ │ │ │ └ tensor(0.)
│ │ │ └ _ResultMetric('val/metric/EfficientBBoxHead/MeanAveragePrecision', value=0.0, cumulated_batch_size=1)
│ │ └ <property object at 0x76913744ec50>
│ └ _Metadata(fx='on_validation_epoch_end', name='val/metric/EfficientBBoxHead/MeanAveragePrecision', prog_bar=False, logger=True...
└ _ResultMetric('val/metric/EfficientBBoxHead/MeanAveragePrecision', value=0.0, cumulated_batch_size=1)
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/strategies/ddp.py", line 342, in reduce
return _sync_ddp_if_available(tensor, group, reduce_op=reduce_op)
│ │ │ └ 'mean'
│ │ └ None
│ └ tensor(0.)
└ <function _sync_ddp_if_available at 0x769139b7f910>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/fabric/utilities/distributed.py", line 179, in _sync_ddp_if_available
return _sync_ddp(result, group=group, reduce_op=reduce_op)
│ │ │ └ 'mean'
│ │ └ None
│ └ tensor(0.)
└ <function _sync_ddp at 0x769139b7f9a0>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/fabric/utilities/distributed.py", line 229, in _sync_ddp
torch.distributed.all_reduce(result, op=op, group=group, async_op=False)
│ │ │ │ │ └ <torch.distributed.distributed_c10d.ProcessGroup object at 0x768e02ce32b0>
│ │ │ │ └ <RedOpType.AVG: 1>
│ │ │ └ tensor(0.)
│ │ └ <function all_reduce at 0x7692dc5583a0>
│ └ <module 'torch.distributed' from '/home/nileena/.local/lib/python3.10/site-packages/torch/distributed/__init__.py'>
└ <module 'torch' from '/home/nileena/.local/lib/python3.10/site-packages/torch/__init__.py'>
File "/home/nileena/.local/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 81, in wrapper
return func(*args, **kwargs)
│ │ └ {'op': <RedOpType.AVG: 1>, 'group': <torch.distributed.distributed_c10d.ProcessGroup object at 0x768e02ce32b0>, 'async_op': F...
│ └ (tensor(0.),)
└ <function all_reduce at 0x7692dc558310>
File "/home/nileena/.local/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 2810, in all_reduce
work = group.allreduce([tensor], opts)
│ │ │ └ <torch.distributed.distributed_c10d.AllreduceOptions object at 0x768e028f90f0>
│ │ └ tensor(0.)
│ └ <instancemethod allreduce at 0x7692ed7f5ea0>
└ <torch.distributed.distributed_c10d.ProcessGroup object at 0x768e02ce32b0>
RuntimeError: No backend type associated with device type cpu
2025-10-15 12:25:59 [ERROR] Encountered an exception during training. | _train:287
Traceback (most recent call last):
File "/home/nileena/.conda/envs/luxonis-train/bin/luxonis_train", line 8, in <module>
sys.exit(app.meta())
│ │ │ └ <property object at 0x7fe20df5e020>
│ │ └ App(help='Luxonis Train CLI', alias=(), version=<function <lambda> at 0x7fe20f14ef80>, version_flags=('--version',), help_fla...
│ └ <built-in function exit>
└ <module 'sys' (built-in)>
File "/home/nileena/.local/lib/python3.10/site-packages/cyclopts/core.py", line 1257, in __call__
return command(*bound.args, **bound.kwargs)
│ │ │ │ └ <property object at 0x7fe20e18d800>
│ │ │ └ <BoundArguments (tokens=('train', '--config', 'can_detection_14oct.yaml'))>
│ │ └ <property object at 0x7fe20e18d7b0>
│ └ <BoundArguments (tokens=('train', '--config', 'can_detection_14oct.yaml'))>
└ <function launcher at 0x7fe20dc708b0>
File "/home/nileena/.conda/envs/luxonis-train/lib/python3.10/site-packages/luxonis_train/__main__.py", line 363, in launcher
app(tokens)
│ └ ('train', '--config', 'can_detection_14oct.yaml')
└ App(help='Luxonis Train CLI', alias=(), version=<function <lambda> at 0x7fe20f14ef80>, version_flags=('--version',), help_fla...
File "/home/nileena/.local/lib/python3.10/site-packages/cyclopts/core.py", line 1257, in __call__
return command(*bound.args, **bound.kwargs)
│ │ │ │ └ <property object at 0x7fe20e18d800>
│ │ │ └ <BoundArguments (config='can_detection_14oct.yaml')>
│ │ └ <property object at 0x7fe20e18d7b0>
│ └ <BoundArguments (config='can_detection_14oct.yaml')>
└ <function train at 0x7fe20df488b0>
File "/home/nileena/.conda/envs/luxonis-train/lib/python3.10/site-packages/luxonis_train/__main__.py", line 62, in train
create_model(config, opts, debug).train(weights=weights)
│ │ │ │ └ None
│ │ │ └ False
│ │ └ None
│ └ 'can_detection_14oct.yaml'
└ <function create_model at 0x7fe20df48820>
File "/home/nileena/.conda/envs/luxonis-train/lib/python3.10/site-packages/luxonis_train/core/core.py", line 354, in train
self._train(
│ └ <function LuxonisModel._train at 0x7fdfcf54cc10>
└ <luxonis_train.core.core.LuxonisModel object at 0x7fe20f132bf0>
> File "/home/nileena/.conda/envs/luxonis-train/lib/python3.10/site-packages/luxonis_train/core/core.py", line 285, in _train
self.pl_trainer.fit(*args, ckpt_path=resume, **kwargs)
│ │ │ │ │ └ {}
│ │ │ │ └ None
│ │ │ └ (LuxonisLightningModule(
│ │ │ (nodes): Nodes(
│ │ │ (EfficientRep): EfficientRep(
│ │ │ (repvgg_encoder): RepVGGBlock(
│ │ │ (no...
│ │ └ <function Trainer.fit at 0x7fdfde329c60>
│ └ <lightning.pytorch.trainer.trainer.Trainer object at 0x7fdfcf54be50>
└ <luxonis_train.core.core.LuxonisModel object at 0x7fe20f132bf0>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/trainer.py", line 561, in fit
call._call_and_handle_interrupt(
│ └ <function _call_and_handle_interrupt at 0x7fdfde411c60>
└ <module 'lightning.pytorch.trainer.call' from '/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/ca...
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/call.py", line 47, in _call_and_handle_interrupt
return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs)
│ │ │ │ │ └ {}
│ │ │ │ └ <lightning.pytorch.trainer.trainer.Trainer object at 0x7fdfcf54be50>
│ │ │ └ (LuxonisLightningModule(
│ │ │ (nodes): Nodes(
│ │ │ (EfficientRep): EfficientRep(
│ │ │ (repvgg_encoder): RepVGGBlock(
│ │ │ (no...
│ │ └ <bound method Trainer._fit_impl of <lightning.pytorch.trainer.trainer.Trainer object at 0x7fdfcf54be50>>
│ └ <property object at 0x7fdfde3304f0>
└ <lightning.pytorch.trainer.trainer.Trainer object at 0x7fdfcf54be50>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/strategies/launchers/subprocess_script.py", line 105, in launch
return function(*args, **kwargs)
│ │ └ {}
│ └ (LuxonisLightningModule(
│ (nodes): Nodes(
│ (EfficientRep): EfficientRep(
│ (repvgg_encoder): RepVGGBlock(
│ (no...
└ <bound method Trainer._fit_impl of <lightning.pytorch.trainer.trainer.Trainer object at 0x7fdfcf54be50>>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/trainer.py", line 599, in _fit_impl
self._run(model, ckpt_path=ckpt_path)
│ │ │ └ None
│ │ └ LuxonisLightningModule(
│ │ (nodes): Nodes(
│ │ (EfficientRep): EfficientRep(
│ │ (repvgg_encoder): RepVGGBlock(
│ │ (non...
│ └ <function Trainer._run at 0x7fdfde32a4d0>
└ <lightning.pytorch.trainer.trainer.Trainer object at 0x7fdfcf54be50>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/trainer.py", line 1012, in _run
results = self._run_stage()
│ └ <function Trainer._run_stage at 0x7fdfde32a5f0>
└ <lightning.pytorch.trainer.trainer.Trainer object at 0x7fdfcf54be50>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/trainer.py", line 1054, in _run_stage
self._run_sanity_check()
│ └ <function Trainer._run_sanity_check at 0x7fdfde32a680>
└ <lightning.pytorch.trainer.trainer.Trainer object at 0x7fdfcf54be50>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/trainer.py", line 1083, in _run_sanity_check
val_loop.run()
│ └ <function _no_grad_context.<locals>._decorator at 0x7fdfde2afbe0>
└ <lightning.pytorch.loops.evaluation_loop._EvaluationLoop object at 0x7fdfcf5496c0>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/loops/utilities.py", line 179, in _decorator
return loop_run(self, *args, **kwargs)
│ │ │ └ {}
│ │ └ ()
│ └ <lightning.pytorch.loops.evaluation_loop._EvaluationLoop object at 0x7fdfcf5496c0>
└ <function _EvaluationLoop.run at 0x7fdfde2afb50>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/loops/evaluation_loop.py", line 152, in run
return self.on_run_end()
│ └ <function _EvaluationLoop.on_run_end at 0x7fdfde2c00d0>
└ <lightning.pytorch.loops.evaluation_loop._EvaluationLoop object at 0x7fdfcf5496c0>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/loops/evaluation_loop.py", line 295, in on_run_end
self._on_evaluation_epoch_end()
│ └ <function _EvaluationLoop._on_evaluation_epoch_end at 0x7fdfde2c04c0>
└ <lightning.pytorch.loops.evaluation_loop._EvaluationLoop object at 0x7fdfcf5496c0>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/loops/evaluation_loop.py", line 377, in _on_evaluation_epoch_end
trainer._logger_connector.on_epoch_end()
│ │ └ <function _LoggerConnector.on_epoch_end at 0x7fdfde2af1c0>
│ └ <lightning.pytorch.trainer.connectors.logger_connector.logger_connector._LoggerConnector object at 0x7fe20dc5f6d0>
└ <lightning.pytorch.trainer.trainer.Trainer object at 0x7fdfcf54be50>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py", line 197, in on_epoch_end
metrics = self.metrics
│ └ <property object at 0x7fdfde2a7740>
└ <lightning.pytorch.trainer.connectors.logger_connector.logger_connector._LoggerConnector object at 0x7fe20dc5f6d0>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py", line 236, in metrics
return self.trainer._results.metrics(on_step)
│ │ │ └ False
│ │ └ <property object at 0x7fdfde331c10>
│ └ <lightning.pytorch.trainer.trainer.Trainer object at 0x7fdfcf54be50>
└ <lightning.pytorch.trainer.connectors.logger_connector.logger_connector._LoggerConnector object at 0x7fe20dc5f6d0>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/logger_connector/result.py", line 476, in metrics
value = self._get_cache(result_metric, on_step)
│ │ │ └ False
│ │ └ _ResultMetric('val/metric/EfficientBBoxHead/MeanAveragePrecision', value=0.0, cumulated_batch_size=1)
│ └ <staticmethod(<function _ResultCollection._get_cache at 0x7fdfde2ae4d0>)>
└ {False, {'on_validation_epoch_end.val/loss/EfficientBBoxHead/AdaptiveDetectionLoss': _ResultMetric('val/loss/EfficientBBoxHea...
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/logger_connector/result.py", line 440, in _get_cache
result_metric.compute()
│ └ <function _ResultMetric.compute at 0x7fde19f3cf70>
└ _ResultMetric('val/metric/EfficientBBoxHead/MeanAveragePrecision', value=0.0, cumulated_batch_size=1)
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/logger_connector/result.py", line 289, in wrapped_func
self._computed = compute(*args, **kwargs)
│ │ │ │ └ {}
│ │ │ └ ()
│ │ └ <bound method _ResultMetric.compute of _ResultMetric('val/metric/EfficientBBoxHead/MeanAveragePrecision', value=0.0, cumulate...
│ └ None
└ _ResultMetric('val/metric/EfficientBBoxHead/MeanAveragePrecision', value=0.0, cumulated_batch_size=1)
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/trainer/connectors/logger_connector/result.py", line 249, in compute
value = self.meta.sync(self.value.clone()) # `clone` because `sync` is in-place
│ │ │ │ │ └ <method 'clone' of 'torch._C.TensorBase' objects>
│ │ │ │ └ tensor(0.)
│ │ │ └ _ResultMetric('val/metric/EfficientBBoxHead/MeanAveragePrecision', value=0.0, cumulated_batch_size=1)
│ │ └ <property object at 0x7fdfde2a6ca0>
│ └ _Metadata(fx='on_validation_epoch_end', name='val/metric/EfficientBBoxHead/MeanAveragePrecision', prog_bar=False, logger=True...
└ _ResultMetric('val/metric/EfficientBBoxHead/MeanAveragePrecision', value=0.0, cumulated_batch_size=1)
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/pytorch/strategies/ddp.py", line 342, in reduce
return _sync_ddp_if_available(tensor, group, reduce_op=reduce_op)
│ │ │ └ 'mean'
│ │ └ None
│ └ tensor(0.)
└ <function _sync_ddp_if_available at 0x7fdfe0a73910>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/fabric/utilities/distributed.py", line 179, in _sync_ddp_if_available
return _sync_ddp(result, group=group, reduce_op=reduce_op)
│ │ │ └ 'mean'
│ │ └ None
│ └ tensor(0.)
└ <function _sync_ddp at 0x7fdfe0a739a0>
File "/home/nileena/.local/lib/python3.10/site-packages/lightning/fabric/utilities/distributed.py", line 229, in _sync_ddp
torch.distributed.all_reduce(result, op=op, group=group, async_op=False)
│ │ │ │ │ └ <torch.distributed.distributed_c10d.ProcessGroup object at 0x7fde0b15a1b0>
│ │ │ │ └ <RedOpType.AVG: 1>
│ │ │ └ tensor(0.)
│ │ └ <function all_reduce at 0x7fe18334c3a0>
│ └ <module 'torch.distributed' from '/home/nileena/.local/lib/python3.10/site-packages/torch/distributed/__init__.py'>
└ <module 'torch' from '/home/nileena/.local/lib/python3.10/site-packages/torch/__init__.py'>
File "/home/nileena/.local/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 81, in wrapper
return func(*args, **kwargs)
│ │ └ {'op': <RedOpType.AVG: 1>, 'group': <torch.distributed.distributed_c10d.ProcessGroup object at 0x7fde0b15a1b0>, 'async_op': F...
│ └ (tensor(0.),)
└ <function all_reduce at 0x7fe18334c310>
File "/home/nileena/.local/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 2810, in all_reduce
work = group.allreduce([tensor], opts)
│ │ │ └ <torch.distributed.distributed_c10d.AllreduceOptions object at 0x7fddd8745330>
│ │ └ tensor(0.)
│ └ <instancemethod allreduce at 0x7fe1945e9e70>
└ <torch.distributed.distributed_c10d.ProcessGroup object at 0x7fde0b15a1b0>
RuntimeError: No backend type associated with device type cpu