Hello KlemenSkrlj,
Thank you for your response, I have succesfully compiled my yolov11 to FP16 precision for my OAK4 using the hub modelconverter. Currently I'm trying to do it offline, to integrate my custom calibration datas, using your advice I have seen that my model is taking a input named 'images', and with a tensor shape of float32[1,3,640,640] and has an output named 'output0' of shape float32[1,93,8400]. Could explain to me why this values change from the one that are given by the config.json in the NN archive that I can download after my yolov11 model is converted with the hub modelconverter, see the config:
{
"config_version": "1.0",
"model": {
"metadata": {
"name": "best",
"path": "best.dlc",
"precision": "float32"
},
"inputs": [
{
"name": "images",
"dtype": "float32",
"input_type": "image",
"shape": [
1,
640,
640,
3
],
"layout": "NHWC",
"preprocessing": {
"mean": [
0\.0,
0\.0,
0\.0
],
"scale": [
1\.0,
1\.0,
1\.0
],
"reverse_channels": false,
"interleaved_to_planar": true,
"dai_type": "BGR888i"
}
}
],
"outputs": [
{
"name": "output1_yolov6r2",
"dtype": "float32",
"shape": [
1,
80,
80,
94
],
"layout": "NDEC"
},
{
"name": "output2_yolov6r2",
"dtype": "float32",
"shape": [
1,
40,
40,
94
],
"layout": "NDEC"
},
{
"name": "output3_yolov6r2",
"dtype": "float32",
"shape": [
1,
20,
20,
94
],
"layout": "NDEC"
}
],
"heads": [
{
"name": null,
"parser": "YOLO",
"metadata": {
"postprocessor_path": null,
"classes": [
.....
],
"n_classes": 89,
"is_softmax": null,
"iou_threshold": 0.5,
"conf_threshold": 0.5,
"max_det": 300,
"anchors": null,
"yolo_outputs": [
"output1_yolov6r2",
"output2_yolov6r2",
"output3_yolov6r2"
],
"mask_outputs": null,
"protos_outputs": null,
"keypoints_outputs": null,
"angles_outputs": null,
"subtype": "yolov8",
"n_prototypes": null,
"n_keypoints": null
},
"outputs": [
"output1_yolov6r2",
"output2_yolov6r2",
"output3_yolov6r2"
]
}
]
}
}