• OAK4
  • imageIn input size defaults to 416 x 416 despite model input is 640 x 640

Hello, I am running some preliminary experiments with OAK 4 S camera and I am using a custom YOLOV6N model with input size of 640 x 640. I am feeding a static image so not using the camera feed in this case as input to the neural network. Everything seems to run at an FPS of roughly 88 but I get this warning in the beginning of each run:
[3260625470] [192.168.178.22] [1742226352.711] [DetectionParser(4)] [warning] Did not get the input image sizes from the imageIn input. Defaulting to 416 x 416

I am not sure where should I set this and whether this affects the inference or not

here is the code I used

import depthai as dai

import numpy as np

import time

import cv2

from depthai_nodes import ParsingNeuralNetwork

device = dai.Device()
modelPath = "./depthai-core/examples/python/.depthai_cached_models/bk_gh_od_02_12_24_640_best_objects.rvc4.tar.xz"

modelArchive = dai.NNArchive(modelPath)
inputSize = modelArchive.getInputSize()

type = modelArchive.getConfig().model.inputs[0].preprocessing.daiType

if type: try: frameType = dai.ImgFrame.Type.BGR888i except AttributeError: type = None

testImg = cv2.imread("/home/asker/oak4/depthai-core/test.jpg")

print(inputSize)testImg = cv2.resize(testImg, (inputSize[0], inputSize[1]))

inputFrame = dai.ImgFrame()

inputFrame.setWidth(inputSize[0])

inputFrame.setHeight(inputSize[1])

inputFrame.setCvFrame(testImg, frameType)

print(inputFrame)

with dai.Pipeline(device) as p:
benchmarkOut = p.create(dai.node.BenchmarkOut)

benchmarkOut.setRunOnHost(False)

benchmarkOut.setFps(-1)

neuralNetwork = p.create(ParsingNeuralNetwork).build( benchmarkOut.out, modelArchive, )
parser_output_queue = neuralNetwork.out.createOutputQueue()
benchmarkIn = p.create(dai.node.BenchmarkIn)

benchmarkIn.setRunOnHost(False)

benchmarkIn.sendReportEveryNMessages(100)

benchmarkIn.logReportsAsWarnings(False)

neuralNetwork.out.link(benchmarkIn.input)

outputQueue = benchmarkIn.report.createOutputQueue()

inputQueue = benchmarkOut.input.createInputQueue()
qRgb = neuralNetwork.passthrough.createOutputQueue()

qDet = neuralNetwork.out.createOutputQueue()
p.start()
frame = None

detections = []

startTime = time.time()

counter = 0

color2 = (255, 255, 255)
def frameNorm(frame, bbox):

normVals = np.full(len(bbox), frame.shape[0])

normVals[::2] = frame.shape[1]

return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)
def displayFrame(name, frame):

color = (255, 0, 0)

for detection in detections:

bbox = frameNorm( frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax), )

# print(f"{bbox=}")

cv2.putText( frame, "class", (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255, ) cv2.putText( frame, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255, )

cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2) cv2.imshow(name, frame)
while p.isRunning():

inputFrame = dai.ImgFrame()

inputFrame.setWidth(inputSize[0])

inputFrame.setHeight(inputSize[1])

inputFrame.setCvFrame(testImg, frameType)

inputQueue.send(inputFrame)

# benchmarkReport = outputQueue.get() # time.sleep(0.01)

# print(f"{benchmarkReport=}") inRgb: dai.ImgFrame = qRgb.get()

inDet: dai.ImgDetections = qDet.get()
if inRgb is not None:

frame = inRgb.getCvFrame()

cv2.putText( frame, "NN fps: {:.2f}".format( counter / (time.monotonic() - startTime)), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, (color2), )
if inDet is not None:

detections = inDet.detections

counter += 1
if frame is not None:

displayFrame("rgb", frame)

if time.time() - startTime > 10:

print("FPS: {:.2f}".format( counter / (time.time() - startTime)))

counter = 0

startTime = time.time()

if cv2.waitKey(1) == ord("q"):

p.stop()

break

# assert isinstance(benchmarkReport, dai.BenchmarkReport)

# print(f"FPS is {benchmarkReport.fps}")

    MohamedAsker
    The warning will be removed in the future. App should run fine regardless.
    For now, connect nn.passthrough to detectionParser.inImage to get rid of it.

    Thanks,
    Jaka